Part Number Hot Search : 
P4KE180 IRF734 2SK22 SWSS0094 UM310 DTC144 IN74A SG28424N
Product Description
Full Text Search
 

To Download STM32L053R6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. october 2016 docid025844 rev 7 1/132 stm32l053c6 stm32l053c8 STM32L053R6 stm32l053r8 ultra-low-power 32-bit mcu arm ? -based cortex ? -m0+, up to 64kb flash, 8kb sram, 2kb eepr om, lcd, usb, adc, dac datasheet - production data features ? ultra-low-power platform ? 1.65 v to 3.6 v power supply ? - 40 to 125 c temperature range ? 0.27 a standby mode (2 wakeup pins) ? 0.4 a stop mode (16 wakeup lines) ? 0.8 a stop mode + rtc + 8 kb ram retention ? 88 a/mhz in run mode ? 3.5 s wakeup time (from ram) ? 5 s wakeup time (from flash memory) ? core: arm ? 32-bit cortex ? -m0+ with mpu ? from 32 khz up to 32 mhz max. ? 0.95 dmips/mhz ? reset and supply management ? ultra-safe, low-power bor (brownout reset) with 5 selectable thresholds ? ultra-low-power por/pdr ? programmable voltage detector (pvd) ? clock sources ? 1 to 25 mhz crystal oscillator ? 32 khz oscillator for rtc with calibration ? high speed internal 16 mhz factory-trimmed rc (+/- 1%) ? internal low-power 37 khz rc ? internal multispeed low-power 65 khz to 4.2 mhz rc ? pll for cpu clock ? pre-programmed bootloader ? usart, spi supported ? development support ? serial wire debug supported ? up to 51 fast i/os (45 i/os 5v tolerant) ? memories ? up to 64 kb flash memory with ecc ?8kb ram ? 2 kb of data eeprom with ecc ? 20-byte backup register ? sector protection against r/w operation ? lcd driver for up to 828segments ? support contrast adjustment ? support blinking mode ? step-up converted on board ? rich analog peripherals ? 12-bit adc 1.14 msps up to 16 channels (down to 1.65 v) ? 12-bit 1 channel dac with output buffers (down to 1.8 v) ? 2x ultra-low-power comparators (window mode and wake up capability, down to 1.65 v) ? up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensors ? 7-channel dma controller, supporting adc, spi, i2c, usart, dac, timers ? 8x peripheral communication interfaces ? 1x usb 2.0 crystal-less, battery charging detection and lpm ? 2x usart (iso 7816, irda), 1x uart (low power) ? up to 4x spi 16 mbits/s ? 2x i2c (smbus/pmbus) ? 9x timers: 1x 16-bit with up to 4 channels, 2x 16-bit with up to 2 channels, 1x 16-bit ultra-low-power timer, 1x systick, 1x rtc, 1x 16-bit basic for dac, and 2x watchdogs (independent/window) ? crc calculation unit, 96-bit unique id ? true rng and firewall protection ? all packages are ecopack ? 2 lqfp64 10x10 mm lqfp48 7x7 mm tfbga64 5x5 mm )%*$ www.st.com
contents stm32l053x6 stm32l053x8 2/132 docid025844 rev 7 contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2 ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 arm? cortex?-m0+ core with mpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.1 power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.2 power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.3 voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 25 3.7 general-purpose inputs/outputs (gpios) . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.8 memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.9 boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.10 direct memory access (dma) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.11 liquid crystal display (lcd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.12 analog-to-digital converter (adc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.13 temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.13.1 internal voltage reference (v refint ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.13.2 v lcd voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14 digital-to-analog converter (dac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.15 ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 29 3.16 system configuration controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.17 touch sensing controller (tsc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.18 timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.18.1 general-purpose timers (tim2, tim21 an d tim22) . . . . . . . . . . . . . . . . 31 3.18.2 low-power timer (lptim) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
docid025844 rev 7 3/132 stm32l053x6 stm32l053x8 contents 4 3.18.3 basic timer (tim6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.18.4 systick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.18.5 independent watchdog (iwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.18.6 window watchdog (wwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.19 communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.19.1 i2c bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.19.2 universal synchronous/asynchronous receiver transmitter (usart) . . 34 3.19.3 low-power universal asynchronous receiver transmitter (lpuart) . . . 34 3.19.4 serial peripheral interface (spi)/inter-integrated sound (i2s) . . . . . . . . 35 3.19.5 universal serial bus (usb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.20 clock recovery system (crs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.21 cyclic redundancy check (crc) calculation unit . . . . . . . . . . . . . . . . . . . 36 3.22 serial wire debug port (sw-dp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 electrical characteristi cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1 parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.1 minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.2 typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.3 typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.4 loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.5 pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.1.6 power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.7 optional lcd power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.8 current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.1 general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.2 embedded reset and power control bloc k characteristics . . . . . . . . . . . 57 6.3.3 embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3.4 supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3.5 wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.6 external clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.7 internal clock source charac teristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
contents stm32l053x6 stm32l053x8 4/132 docid025844 rev 7 6.3.8 pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.9 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.10 emc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.11 electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.12 i/o current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.13 i/o port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.14 nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.15 12-bit adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.3.16 dac electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3.17 temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3.18 comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3.19 timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.20 communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.21 lcd controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.1 lqfp64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 7.2 tfbga64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 7.3 lqfp48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.4 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.4.1 reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8 part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
docid025844 rev 7 5/132 stm32l053x6 stm32l053x8 list of tables 6 list of tables table 1. ultra-low-power stm32l053x6/x8 device features and peripheral counts. . . . . . . . . . . . . 11 table 2. functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 16 table 3. cpu frequency range depending on dynamic voltag e scaling . . . . . . . . . . . . . . . . . . . . . . 16 table 4. functionalities depending on the working mode (from run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 table 5. stm32l0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 table 6. temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 table 7. internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 table 8. capacitive sensing gpios available on stm32l053x6/8 devices . . . . . . . . . . . . . . . . . . . 30 table 9. timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 table 10. comparison of i2c analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 table 11. stm32l053x6/8 i 2 c implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 table 12. usart implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 table 13. spi/i2s implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 table 14. legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 table 15. stm32l053x6/8 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 table 16. alternate function port a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 table 17. alternate function port b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 table 18. alternate function port c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 19. alternate function port d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 20. alternate function port h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 table 21. voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 table 22. current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 table 23. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 table 24. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 25. embedded reset and power control block characterist ics. . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 26. embedded internal reference voltage calibration valu es . . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 27. embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 8 table 28. current consumption in run mode, code with data processing running from flash. . . . . . 60 table 29. current consumption in run mode vs code type, code with data processing running from flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 table 30. current consumption in run mode, code wit h data processing running from ram . . . . . . 62 table 31. current consumption in run mode vs code type, code with data processing running from ram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 table 32. current consumption in sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 table 33. current consumption in low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 table 34. current consumption in low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 table 35. typical and maximum current consumptions in st op mode . . . . . . . . . . . . . . . . . . . . . . . . 66 table 36. typical and maximum current consumptions in standby mode . . . . . . . . . . . . . . . . . . . . . 67 table 37. average current consumption during wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 table 38. peripheral current consumption in run or sleep mo de . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 table 39. peripheral current consumption in stop and stan dby mode . . . . . . . . . . . . . . . . . . . . . . . 70 table 40. low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 table 41. high-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 table 42. low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 table 43. hse oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table 44. lse oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 table 45. 16 mhz hsi16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6
list of tables stm32l053x6 stm32l053x8 6/132 docid025844 rev 7 table 46. hsi48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 47. lsi oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 48. msi oscillator ch aracteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 49. pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 50. ram and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 51. flash memory and dat a eeprom characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 52. flash memory and data eeprom endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 80 table 53. ems characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 table 54. emi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 table 55. esd absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 table 56. electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 table 57. i/o current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 table 58. i/o static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 table 59. output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 table 60. i/o ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 table 61. nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 table 62. adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 table 63. r ain max for f adc = 16 mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 table 64. adc accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 table 65. dac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 table 66. temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 table 67. temperature sensor characteristic s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 table 68. comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 table 69. comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 table 70. timx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 table 71. i2c analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 table 72. usart/lpuart characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 table 73. spi characteristics in voltage range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 table 74. spi characteristics in voltage range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 table 75. spi characteristics in voltage range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5 table 76. i2s characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 table 77. usb startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 table 78. usb dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 table 79. usb: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 11 table 80. lcd controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 table 81. lqfp64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 table 82. tfbga64 ? 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 table 83. tfbga64 recommended pcb design rules (0.5 mm pitch bga). . . . . . . . . . . . . . . . . . . 118 table 84. lqfp48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 121 table 85. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 table 86. stm32l053x6/8 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 table 87. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
docid025844 rev 7 7/132 stm32l053x6 stm32l053x8 list of figures 8 list of figures figure 1. stm32l053x6/8 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 2. clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 figure 3. stm32l053x6/8 lqfp64 pinout - 10 x 10 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 figure 4. stm32l053x6/8 tfbga64 ballout - 5x 5 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 figure 5. stm32l053x6/8 lqfp48 pinout - 7 x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 figure 6. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 figure 7. pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 figure 8. pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 figure 9. power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 figure 10. optional lcd power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 11. current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 12. idd vs vdd, at ta= 25/55/85 /105 c, run mode, code running from flash memory, range 2, hse, 1ws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 figure 13. idd vs vdd, at ta= 25/55/85 /105 c, run mode, code running from flash memory, range 2, hsi16, 1ws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 figure 14. idd vs vdd, at ta= 25/55/ 85/105/125 c, low-power run mode, code running from ram, range 3, msi (range 0) at 64 khz, 0 ws . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 figure 15. idd vs vdd, at ta= 25/55/ 85/105/125 c, stop mode with rtc enabled and running on lse low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 figure 16. idd vs vdd, at ta= 25/55/85/ 105/125 c, stop mode with rtc disabled, all clocks off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 figure 17. high-speed external clock source ac timing diagra m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 figure 18. low-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 figure 19. hse oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 figure 20. typical application with a 32.768 khz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 figure 21. hsi16 minimum and maximum value versus temperat ure . . . . . . . . . . . . . . . . . . . . . . . . . 76 figure 22. vih/vil versus vdd (cmos i/os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 figure 23. vih/vil versus vdd (ttl i/os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 figure 24. i/o ac characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 figure 25. recommended nrst pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 figure 26. adc accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 figure 27. typical connection diagram using the adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 figure 28. power supply and reference decoupling (v ref+ not connected to v dda ) . . . . . . . . . . . . . 94 figure 29. power supply and reference decoupling (v ref+ connected to v dda ). . . . . . . . . . . . . . . . . 95 figure 30. 12-bit buffered/non-buffered dac. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 figure 31. spi timing diagram - slave mode and cpha = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 figure 32. spi timing diagram - slave mode and cpha = 1 (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 figure 33. spi timing diagram - master mode (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 figure 34. i 2 s slave timing diagram (philips protocol) (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 figure 35. i 2 s master timing diag ram (philips protocol) (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 figure 36. usb timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 111 figure 37. lqfp64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 113 figure 38. lqfp64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 115 figure 39. lqfp64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 figure 40. tfbga64 ? 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 figure 41. tfbga64 ? 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
list of figures stm32l053x6 stm32l053x8 8/132 docid025844 rev 7 figure 42. tfbga64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 figure 43. lqfp48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 120 figure 44. lqfp48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 121 figure 45. lqfp48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 figure 46. thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
docid025844 rev 7 9/132 stm32l053x6 stm32l053x8 introduction 36 1 introduction the ultra-low-power stm32l053x6/8 are offered in 3 different package types: from 48 pins to 64 pins. depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. these features make the ultra-low-power st m32l053x6/8 microcontrollers suitable for a wide range of applications: ? gas/water meters and industrial sensors ? healthcare and fitness equipment ? remote control and user interface ? pc peripherals, gaming, gps equipment ? alarm system, wired and wireless sensors, video intercom this stm32l053x6/8 datasheet should be re ad in conjunction with the stm32l0x3xx reference manual (rm0367) . for information on the arm ? cortex ? -m0+ core please refer to the cortex ? -m0+ technical reference manual, available from the www.arm.com website. figure 1 shows the general block diagram of the device family.
description stm32l053x6 stm32l053x8 10/132 docid025844 rev 7 2 description the ultra-low-power stm32l053x6/8 microcontro llers incorporate the connectivity power of the universal serial bus (usb 2.0 crystal-less) with the high-performance arm ? cortex ? - m0+ 32-bit risc core operating at a 32 mhz frequency, a memory protection unit (mpu), high-speed embedded memories (up to 64 kbytes of flash program memory, 2 kbytes of data eeprom and 8 kbytes of ram) plus an extens ive range of enhanced i/os and peripherals. the stm32l053x6/8 devices provide high power efficiency for a wide range of performance. it is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes. the stm32l053x6/8 devices offer several analog features, one 12-bit adc with hardware oversampling, one dac, two ultra-low-power comparators, several timers, one low-power timer (lptim), three general-purpose 16-bit timers and one basic timer, one rtc and one systick which can be used as timebases. they also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock. moreover, the stm32l053x6/8 devices embed standard and advanced communication interfaces: up to two i2c, two spis, one i2 s, two usarts, a low- power uart (lpuart), and a crystal-less usb. the devices offer up to 24 capacitive sensing channels to simply add touch sensing functionality to any application. the stm32l053x6/8 also include a real-time clock and a set of backup registers that remain powered in standby mode. finally, their integrated lcd controller has a built-in lcd voltage generator that allows to drive up to 8 multiplexed lcds with contrast independent of the supply voltage. the ultra-low-power stm32l053x6/8 devices operate from a 1.8 to 3.6 v power supply (down to 1.65 v at power down) with bor and from a 1.65 to 3.6 v power supply without bor option. they are available in the -40 to +125 c temperature range. a comprehensive set of power-saving modes allows the design of low-power applications.
docid025844 rev 7 11/132 stm32l053x6 stm32l053x8 description 36 2.1 device overview table 1. ultra-low-power stm32l053x6/x8 device features and peripheral counts peripheral stm32l053c6 STM32L053R6 stm32l053c8 stm32l053r8 flash (kbytes) 32 64 data eeprom (kbytes) 22 ram (kbytes) 88 timers general-purpose 33 basic 11 lptimer 11 rtc/systick/iwdg/wwdg 1/1/1/1 1/1/1/1 communication interfaces spi/i2s 4(2) (1) /1 4(2) (1) /1 i 2 c 22 usart 22 lpuart 11 usb/(vdd_usb) 1/(1) 1/(1) gpios 37 51 (2) 37 51 (2) clocks: hse/lse/hsi/msi/lsi 1/1/1/1/1 1/1/1/1/1 12-bit synchronized adc number of channels 1 10 1 16 (2) 1 10 1 16 (2) 12-bit dac number of channels 1 1 1 1 lcd com x seg 1 4x18 1 4x32 or 8x28 (2) 1 4x18 1 4x32 or 8x28 (2) comparators 22 capacitive sensing channels 17 24 (2) 17 24 (2) max. cpu frequency 32 mhz operating voltage 1.8 v to 3.6 v (down to 1.65 v at power-down) with bor option 1.65 v to 3.6 v without bor option operating temperatures ambient temperature: ?40 to +125 c junction temperature: ?40 to +130 c packages lqfp48 lqfp64, tfbga64 lqfp48 lqfp64, tfbga64 1. 2 spi interfaces are usarts operating in spi master mode. 2. tfbga64 has one gpio, one lcd com x seg, one adc input and one capacitive sensi ng channel less than lqfp64.
description stm32l053x6 stm32l053x8 12/132 docid025844 rev 7 figure 1. stm32l053x6/8 block diagram &257(;0&38 )pd[0+] 6:' 038 19,& *3,23257$ *3,23257% *3,23257& *3,23257' *3,23257+ 7hps vhqvru 5(6(7 &/. )/$6+ ((3520 %227 5$0 '0$ $+%)pd[0+] 76& &5& 51* %5,'*( $ 3 %  ),5(:$// '%* (;7, $'& 63, 86$57 7,0 &203 /6( 7,0 %5,'*( $ 3 %  &56 7,0 5$0. '$& ,& ,& 86$57 86%)6 /38$57 63,,6 7,0 /&' ,:'* 57& ::'* /37,0 %&.35(* +6( +6,0 3// 06, /6, +6,0 308 5(*8/$725 9'' 9''$ 95()b287 1567 39'b,1 26&b,1 26&b287 26&b,1 26&b287 :.83[ 3$>@ 3+>@ 3'>@ 3&>@ 3%>@ $,1[ 0,62026, 6&.166 5;7;576 &76&. fk fk ,13,10287 ,1,1 (75287 '3'02( &56b6<1& 9''b86% 287 6&/6'$ 60%$ 6&/6'$ 60%$ 5;7;576 &76&. 5;7;576 &76 0,620&. 026,6' 6&.&.166 :6 fk &20[6(*[ /&'b9/&' 6:' 06y9 &203 ,13,10287
docid025844 rev 7 13/132 stm32l053x6 stm32l053x8 description 36 2.2 ultra-low-power device continuum the ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to arm ? cortex ? -m4, including arm ? cortex ? -m3 and arm ? cortex ? -m0+. the stm32lx series are the best choice to answer your needs in terms of ultra-low-power features. the stm32 ultra-low-power series are the best solution for applications such as gaz/water meter, keyboard/mouse or fitness and healthcare application. several built-in features like lcd drivers, dual-bank memory, low-power run mode, operational amplifiers, 128-bit aes, dac, crystal-less usb and many other definitely help you building a highly cost optimized application by reducing bom cost. stmicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to -pin compatibility between all stm8lx and stm32lx on one hand, and between all stm32lx and stm32fx on the other hand. thanks to this un precedented scalability, your legacy applicat ion can be upgraded to respond to the latest market feature and efficiency requirements.
functional overview stm32l053x6 stm32l053x8 14/132 docid025844 rev 7 3 functional overview 3.1 low-power modes the ultra-low-power stm32l053x6/8 support dyna mic voltage scaling to optimize its power consumption in run mode. the voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system?s maximum operating frequency and the external voltage supply. there are three power consumption ranges: ? range 1 (v dd range limited to 1.71-3.6 v), with the cpu running at up to 32 mhz ? range 2 (full v dd range), with a maximum cpu frequency of 16 mhz ? range 3 (full v dd range), with a maximum cpu frequency limited to 4.2 mhz seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: ? sleep mode in sleep mode, only the cpu is stopped. all peripherals continue to operate and can wake up the cpu when an interrupt/event occurs. sleep mode power consumption at 16 mhz is about 1 ma with all peripherals off. ? low-power run mode this mode is achieved with t he multispeed in ternal (msi) rc oscilla tor set to the low- speed clock (max 131 khz), execution from sram or flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. in low- power run mode, the clock frequency and the number of enabled peripherals are both limited. ? low-power sleep mode this mode is achieved by entering sleep mode with the internal voltage regulator in low-power mode to minimize the regulator?s operating current. in low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 khz. when wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on. stop mode with rtc the stop mode achieves the lowest powe r consumption while retaining the ram and register contents and real time clock. all clocks in the v core domain are stopped, the pll, msi rc, hse crystal and hsi rc oscillato rs are disabled. the lse or lsi is still running. the voltage regulator is in the low-power mode. some peripherals featuring wakeup capability can enable the hsi rc during stop mode to detect their wakeup condition. the device can be woken up from stop mode by any of the exti line, in 3.5 s, the processor can serve the interrupt or resume the code. the exti line source can be any gpio. it can be the pvd output, the comp arator 1 event or comparator 2 event (if internal reference voltage is on), it c an be the rtc alarm/tamper/timestamp/wakeup events, the usb/usart/i2c/lpuart/lptimer wakeup events.
docid025844 rev 7 15/132 stm32l053x6 stm32l053x8 functional overview 36 ? stop mode without rtc the stop mode achieves the lowest powe r consumption while retaining the ram and register contents. all clocks are stopped, the pll, msi rc, hsi and lsi rc, hse and lse crystal oscillators are disabled. some peripherals featuring wakeup capability can enable the hsi rc during stop mode to detect their wakeup condition. the voltage regulator is in the low-power mode. the device can be woken up from stop mode by any of the exti line, in 3.5 s, the processor can serve the interrupt or resume the code. the exti line source can be any gpio. it can be the pvd output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). it can also be wakened by the usb/usart /i2c/lpuart/lptimer wakeup events. ? standby mode with rtc the standby mode is used to achieve the lowest power consumption and real time clock. the internal voltage regulator is switched off so that the entire v core domain is powered off. the pll, msi rc, hse crystal and hsi rc oscillators are also switched off. the lse or lsi is still running. after entering standby mode, the ram and register contents are lost except fo r registers in the standby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32 khz oscillator, rcc_csr register). the device exits standby mode in 60 s when an external reset (nrst pin), an iwdg reset, a rising edge on one of the three wkup pins, rtc alarm (alarm a or alarm b), rtc tamper event, rtc timestamp event or rtc wakeup event occurs. ? standby mode without rtc the standby mode is used to achieve the lowest power consumption. the internal voltage regulator is switched off so that the entire v core domain is powered off. the pll, msi rc, hsi and lsi rc, hse and lse cr ystal oscillators are also switched off. after entering standby mode, the ram and register contents are lost except for registers in the standby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32 khz oscillator, rcc_csr register). the device exits standby mode in 60 s when an external reset (nrst pin) or a rising edge on one of the three wkup pin occurs. note: the rtc, the iwdg, and the corresponding clock sources are not stopped automatically by entering stop or standby mode.the lcd is not stopped automatically by entering stop mode.
functional overview stm32l053x6 stm32l053x8 16/132 docid025844 rev 7 table 2. functionalities depending on the operating power supply range operating power supply range functionalities depending on the operating power supply range dac and adc operation dynamic voltage scaling range i/o operation usb v dd = 1.65 to 1.71 v adc only, conversion time up to 570 ksps range 2 or range 3 degraded speed performance not functional v dd = 1.71 to 1.8 v (1) 1. cpu frequency changes from initial to final must respect "fcpu initial <4*fcpu final". it must also respect 5 s delay between two changes. for example to switch fr om 4.2 mhz to 32 mhz, you can switch from 4.2 mhz to 16 mhz, wait 5 s, then switch from 16 mhz to 32 mhz. adc only, conversion time up to 1.14 msps range 1, range 2 or range 3 degraded speed performance functional (2) v dd = 1.8 to 2.0 v (1) conversion time up to 1.14 msps range1, range 2 or range 3 degraded speed performance functional (2) v dd = 2.0 to 2.4 v conversion time up to 1.14 msps range 1, range 2 or range 3 full speed operation functional (2) 2. to be usb compliant from the i/o voltage standpoint, the minimum v dd_usb is 3.0 v. v dd = 2.4 to 3.6 v conversion time up to 1.14 msps range 1, range 2 or range 3 full speed operation functional (2) table 3. cpu frequency range de pending on dynamic voltage scaling cpu frequency range dynamic voltage scaling range 16 mhz to 32 mhz (1ws) 32 khz to 16 mhz (0ws) range 1 8 mhz to 16 mhz (1ws) 32 khz to 8 mhz (0ws) range 2 32 khz to 4.2 mhz (0ws) range 3
docid025844 rev 7 17/132 stm32l053x6 stm32l053x8 functional overview 36 table 4. functionalities depending on the working mode (from run/active down to standby) (1) ips run/active sleep low- power run low- power sleep stop standby wakeup capability wakeup capability cpu y -- y -- -- -- flash memory o o o o -- -- ram y y y y y -- backup registers y y y y y y eeprom o o o o -- -- brown-out reset (bor) oooooooo dma o o o o -- -- programmable voltage detector (pvd) oooooo- power-on/down reset (por/pdr) yyyyyyyy high speed internal (hsi) oo---- (2) -- high speed external (hse) oooo-- -- low speed internal (lsi) ooooo o low speed external (lse) ooooo o multi-speed internal (msi) ooyy-- -- inter-connect controller yyyyy -- rtc o o o o o o o rtc tamper o o o o o o o o auto wakeup (awu) oooooooo lcd o o o o o -- usb o o -- -- -- o -- usart o o o o o (3) o-- lpuart o o o o o (3) o-- spi o o o o -- -- i2c o o o o o (4) o-- adc o o -- -- -- --
functional overview stm32l053x6 stm32l053x8 18/132 docid025844 rev 7 dac o o o o o -- temperature sensor ooooo -- comparators o o o o o o -- 16-bit timers o o o o -- -- lptimer o o o o o o iwdg o o o o o o o o wwdg o o o o -- -- touch sensing controller (tsc) o o -- -- -- -- systick timer o o o o -- gpios o o o o o o 2 pins wakeup time to run mode 0 s 0.36 s 3 s 32 s 3.5 s 50 s consumption v dd =1.8 to 3.6 v (typ) down to 140 a/mhz (from flash memory) down to 37 a/mhz (from flash memory) down to 8 a down to 4.5 a 0.4 a (no rtc) v dd =1.8 v 0.28 a (no rtc) v dd =1.8 v 0.8 a (with rtc) v dd =1.8 v 0.65 a (with rtc) v dd =1.8 v 0.4 a (no rtc) v dd =3.0 v 0.29 a (no rtc) v dd =3.0 v 1 a (with rtc) v dd =3.0 v 0.85 a (with rtc) v dd =3.0 v 1. legend: ?y? = yes (enable). ?o? = optional can be enabled/disabled by software) ?-? = not available 2. some peripherals with wakeup from stop capability can reques t hsi to be enabled. in this case, hsi is woken up by the peripheral, and only feeds the peripheral which requested it. hsi is automatically put off when the peripheral does not need it anymore. 3. uart and lpuart reception is functional in stop mode. it generates a wakeup interrupt on start. to generate a wakeup on address match or received frame event, the lpuart can run on lse clock while the uart has to wake up or keep running the hsi clock. 4. i2c address detection is functional in stop mode. it generates a wakeup interrupt in case of address match. it will wake up the hsi during reception. table 4. functionalities depending on the working mode (from run/active down to standby) (continued) (1) ips run/active sleep low- power run low- power sleep stop standby wakeup capability wakeup capability
docid025844 rev 7 19/132 stm32l053x6 stm32l053x8 functional overview 36 3.2 interconnect matrix several peripherals are directly interconnec ted. this allows autonomous communication between peripherals, thus saving cpu resources and power consumption. in addition, these hardware connections allow fast and predictable latency. depending on peripherals, these interconnect ions can operate in run, sleep, low-power run, low-power sleep and stop modes. table 5. stm32l0xx peripherals interconnect matrix interconnect source interconnect destination interconnect action run sleep low- power run low- power sleep stop compx tim2,tim21, tim22 timer input channel, trigger from analog signals comparison yy y y - lptim timer input channel, trigger from analog signals comparison yy y y y timx timx timer triggered by other timer yy y y - rtc tim21 timer triggered by auto wake-up yy y y - lptim timer triggered by rtc event yy y y y all clock source timx clock source used as input channel for rc measurement and trimming yy y y - usb crs/hsi48 the clock recovery system trims the hsi48 based on usb sof yy - - - gpio timx timer input channel and trigger yy y y - lptim timer input channel and trigger yy y y y adc,dac conversion trigger y y y y -
functional overview stm32l053x6 stm32l053x8 20/132 docid025844 rev 7 3.3 arm ? cortex ? -m0+ core with mpu the cortex-m0+ processor is an entry-level 32-bit arm cortex processor designed for a broad range of embedded applications. it offers significant benefits to developers, including: ? a simple architecture that is easy to learn and program ? ultra-low power, energy-efficient operation ? excellent code density ? deterministic, high-performance interrupt handling ? upward compatibility with co rtex-m processor family ? platform security robustness, with in tegrated memory protection unit (mpu). the cortex-m0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline von neumann arch itecture. the processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier. the cortex-m0+ processor provides the except ional performance expected of a modern 32- bit architecture, with a higher code density t han other 8-bit and 16-bit microcontrollers. owing to its embedded arm core, the stm32l053x6/8 are compatible with all arm tools and software. nested vectored interrupt controller (nvic) the ultra-low-power stm32l053x6/8 embed a nest ed vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels. the cortex-m0+ processor closely integrates a configurable nested vectored interrupt controller (nvic), to deliver industry-leading interrupt performance. the nvic: ? includes a non-mask able interrupt (nmi) ? provides zero jitte r interrupt option ? provides four interr upt priority levels the tight integration of the processor core and nvic provides fast execution of interrupt service routines (isrs), dramatically reducing the interrupt latency. this is achieved through the hardware stacking of registers, and the abilit y to abandon and restart load- multiple and store-multiple operations. interrupt handlers do not require any assembler wrapper code, removing any code overhead from the isrs. tail-chaining optimization also significantly reduces the overhead when switching from one isr to another. to optimize low-power designs, the nvic int egrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode. this hardware block provides flexible interrupt management features with minimal interrupt latency.
docid025844 rev 7 21/132 stm32l053x6 stm32l053x8 functional overview 36 3.4 reset and supply management 3.4.1 power supply schemes ? v dd = 1.65 to 3.6 v: external power supply fo r i/os and the internal regulator. provided externally through v dd pins. ? v ssa , v dda = 1.65 to 3.6 v: external analog power supplies for adc, dac, reset blocks, rcs and pll (minimum voltage to be applied to v dda is 1.8 v when the dac is used). v dda and v ssa must be connected to v dd and v ss , respectively. ? v dd_usb = 1.65 to 3.6v: external power supply for usb transceiver, usb_dm (pa11) and usb_dp (pa12). to guarantee a correct voltage level for usb communication v dd_usb must be above 3.0v. if usb is not used this pin must be tied to v dd . 3.4.2 power supply supervisor the devices have an integrated zeropower power-on reset (por)/power-down reset (pdr) that can be coupled with a brownout reset (bor) circuitry. two versions are available: ? the version with bor activated at power-on operates between 1.8 v and 3.6 v. ? the other version without bor oper ates between 1.65 v and 3.6 v. after the v dd threshold is reached (1.65 v or 1.8 v depending on the bor which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the bor permanently: in this case, the vdd min value becomes 1.65 v (whatever the version, bo r active or not, at power-on). when bor is active at power- on, it ensures proper operation starting from 1.8 v whatever the power ramp-up phase before it reaches 1.8 v. when bor is not active at power-up, the power ramp-up should guarantee that 1.65 v is reached on v dd at least 1 ms after it exits the por area. five bor thresholds are available through opti on bytes, starting from 1.8 v to 3 v. to reduce the power consumption in stop mode, it is possible to automatically switch off the internal reference voltage (v refint ) in stop mode. the device remains in reset mode when v dd is below a specified threshold, v por/pdr or v bor , without the need for any external reset circuit. note: the start-up time at power-on is typically 3.3 ms when bor is active at power-up, the start- up time at power-on can be decreased down to 1 ms typically for devices with bor inactive at power-up. the devices feature an embedded programmable voltage detector (pvd) that monitors the v dd/vdda power supply and compares it to the v pvd threshold. this pvd offers 7 different levels between 1.85 v and 3.05 v, chosen by software, with a step around 200 mv. an interrupt can be generated when v dd/vdda drops below the v pvd threshold and/or when v dd/vdda is higher than the v pvd threshold. the interrupt service routine can then generate a warning message and/or put the mcu into a safe state. the pvd is enabled by software.
functional overview stm32l053x6 stm32l053x8 22/132 docid025844 rev 7 3.4.3 voltage regulator the regulator has three operation modes: main (mr), low power (lpr) and power down. ? mr is used in run mode (nominal regulation) ? lpr is used in the low-power run, low-power sleep and stop modes ? power down is used in standby mode. the regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and ram are lost except for the st andby circuitry (wakeup logic, iwdg, rtc, lsi, lse crystal 32 khz oscillator, rcc_csr). 3.5 clock management the clock controller distributes the clocks coming from different oscillators to the core and the peripherals. it also manages clock gating for low-power modes and ensures clock robustness. it features: ? clock prescaler to get the best trade-off between speed a nd current consumption, the clock frequency to the cpu and peripherals can be adjusted by a programmable prescaler. ? safe clock switching clock sources can be changed safely on the fly in run mode through a configuration register. ? clock management to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. ? system clock source three different clock sources can be used to drive the master clock sysclk: ? 1-25 mhz high-speed external crystal (hse), that can supply a pll ? 16 mhz high-speed internal rc oscillator (h si), trimmable by software, that can supply a pllmultispeed internal rc oscilla tor (msi), trimmable by software, able to generate 7 frequencies (65 khz, 131 khz, 262 khz, 524 khz, 1.05 mhz, 2.1 mhz, 4.2 mhz). when a 32.768 khz clock so urce is available in the system (lse), the msi frequency can be trimmed by so ftware down to a 0.5% accuracy. ? auxiliary clock source two ultra-low-power clock sources that can be used to drive the lcd controller and the real-time clock: ? 32.768 khz low-speed external crystal (lse) ? 37 khz low-speed internal rc (lsi), also used to drive the independent watchdog. the lsi clock can be measured using the high-speed internal rc oscillator for greater precision. ? rtc and lcd clock sources the lsi, lse or hse sources can be chosen to clock the rtc and the lcd, whatever the system clock. ? usb clock source a 48 mhz clock trimmed through the usb sof supplies the usb interface.
docid025844 rev 7 23/132 stm32l053x6 stm32l053x8 functional overview 36 ? startup clock after reset, the microcontroller restarts by default with an internal 2 mhz clock (msi). the prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. ? clock security system (css) this feature can be enabled by software. if an hse clock failure occurs, the master clock is automatically switched to hsi and a software interrupt is generated if enabled. another clock security system can be enabled, in case of failure of the lse it provides an interrupt or wakeup event which is generated if enabled. ? clock-out capability (mco: microcontroller clock output) it outputs one of the internal clocks for external use by the application. several prescalers allow the configuration of the ahb fr equency, each apb (apb1 and apb2) domains. the maximum frequency of the ahb and the apb domains is 32 mhz. see figure 2 for details on the clock tree.
functional overview stm32l053x6 stm32l053x8 24/132 docid025844 rev 7 figure 2. clock tree 069 /hjhqg +6( +ljkvshhgh[whuqdoforfnvljqdo +6, +ljkvshhglqwhuqdoforfnvljqdo /6, /rzvshhglqwhuqdoforfnvljqdo /6( /rzvshhgh[whuqdoforfnvljqdo 06, 0xowlvshhglqwhuqdoforfnvljqdo :dwfkgrj/6 /6,5& /6(26& 57& /6,whpsr #9  +6,5& /hyhovkliwhuv +6(26& /hyhovkliwhuv 5&0+] /hyhovkliwhuv /68 0+]&orfn 'hwhfwru /6' &orfn 5hfryhu\ 6\vwhp  /6(whpsr 06,5& /hyhovkliwhuv   /hyhovkliwhuv 3// ;   $3% 35(6&  $+% 35(6& ? &orfn 6rxufh &rqwuro xvebhq #9 #9 #9 #9 #9 #9 #9 #9 #9 #9 uqjbhq 0+] 86%&/. 0+]51* ,&&/. /38$57 8$57&/. /37,0&/. /6( +6, 6<6&/. 3&/. /6, 3hulskhudo forfnhqdeoh 3&/.wr$3% shulskhudov qrw vohhsru ghhsvohhs qrw vohhsru ghhsvohhs qrwghhsvohhs qrwghhsvohhs +&/. 6\v7lfn 7lphu &.b3:5 )&/. 3//&/. +6( +6, 06, /6( /6, 'hglfdwhg0+]3//rxwsxw +6(suhvhqwruqrw #9 #9 ''&25( fnbufkv  +6, +6, 06, 0+] fnbsoolq (qdeoh:dwfkgrj 57&hqdeoh /&'hqdeoh $'&hqdeoh $'&&/. /&'&/. /68 /6' /6' 0&2 0&26(/ 3//65& +6,06(/ 57&6(/ 6\vwhp &orfn 0+] pd[ ,i $3%suhvf  [ hovh[ wr7,0[ 3hulskhudo forfnhqdeoh 3hulskhudo forfnhqdeoh 3hulskhudo forfnhqdeoh $3% 35(6&  3hulskhudo forfnhqdeoh 3&/.wr$3% shulskhudov 0+] pd[ ,i $3%suhvf  [ hovh[ wr7,0[ 3hulskhudo forfnhqdeoh /6'
docid025844 rev 7 25/132 stm32l053x6 stm32l053x8 functional overview 36 3.6 low-power real-time cl ock and backup registers the real time clock (rtc) and the 5 backup registers are supplied in all modes including standby mode. the backup registers are five 32-b it registers used to store 20 bytes of user application data. they are not reset by a system reset, or when the device wakes up from standby mode. the rtc is an independent bcd timer/counter. its main features are the following: ? calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in bcd (binary-coded decimal) format ? automatically correction for 28, 29 (leap year), 30, and 31 day of the month ? two programmable alarms with wake up from stop and stan dby mode capability ? periodic wakeup from stop and standby with programmable resolution and period ? on-the-fly correction from 1 to 32767 rtc clock pulses. this can be used to synchronize it with a master clock. ? reference clock detection: a more precise se cond source clock (50 or 60 hz) can be used to enhance the calendar precision. ? digital calibration circuit with 1 ppm resolu tion, to compensate for quartz crystal inaccuracy ? 2 anti-tamper detection pins with programma ble filter. the mcu can be woken up from stop and standby modes on tamper event detection. ? timestamp feature which can be used to save the calendar content. this function can be triggered by an event on the timestamp pin, or by a tamper event. the mcu can be woken up from stop and standby modes on timestamp event detection. the rtc clock sources can be: ? a 32.768 khz external crystal ? a resonator or oscillator ? the internal low-power rc oscillator (typical frequency of 37 khz) ? the high-speed external clock 3.7 general-purpose inputs/outputs (gpios) each of the gpio pins can be configured by so ftware as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. most of the gpio pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function regi sters. all gpios are high current capable. each gpio output, speed can be slowed (40 mh z, 10 mhz, 2 mhz, 400 khz). the alternate function configuration of i/os can be locked if needed following a specific sequence in order to avoid spurious writing to the i/o registers. the i/o controller is connected to a dedicated io bus with a toggling speed of up to 32 mhz. extended interrupt/event controller (exti) the extended interrupt/event co ntroller consists of 28 edge det ector lines used to generate interrupt/event requests. each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. a pending register maintains the status of the interrupt requests. the exti can detect an external line with a pulse width shorter than the in ternal apb2 clock period. up to 51 gpios can be connected to the 16 configurable interr upt/event lines. the 12 other lines are connected to pvd, rtc, usb, usarts, lpuart, lptimer or comparator events.
functional overview stm32l053x6 stm32l053x8 26/132 docid025844 rev 7 3.8 memories the stm32l053x6/8 devices have the following features: ? 8 kbytes of embedded sram accessed (read/ write) at cpu clock speed with 0 wait states. with the enhanced bus matrix, op erating the ram does not lead to any performance penalty during accesses to th e system bus (ahb and apb buses). ? the non-volatile memory is divided into three arrays: ? 32 or 64 kbytes of embedded flash program memory ? 2 kbytes of data eeprom ? information block containing 32 user and factory options bytes plus 4 kbytes of system memory the user options bytes are used to write-pr otect or read-out protect the memory (with 4 kbyte granularity) and/or readout-protect the whole memory with the following options: ? level 0 : no protection ? level 1 : memory readout protected. the flash memory cannot be read from or written to if either debug features are connected or boot in ram is selected ? level 2 : chip readout protected, debug features (cortex-m0+ serial wire) and boot in ram selection disabled (debugline fuse) the firewall protects parts of code/data from acce ss by the rest of the code that is executed outside of the protected area. the granularit y of the protected code segment or the non- volatile data segment is 256 bytes (flash memory or eeprom) against 64 bytes for the volatile data segment (ram). the whole non-volatile memory embeds th e error correction code (ecc) feature. 3.9 boot modes at startup, boot0 pin and nboot1 option bit are used to select one of three boot options: ? boot from flash memory ? boot from system memory ? boot from embedded ram the boot loader is located in system memory. it is used to reprogram the flash memory by using spi1(pa4, pa5, pa6, pa7 ) or spi2 (pb12, pb13, pb 14, pb15), usart1(pa9, pa10) or usart2(pa2, pa3). see stm32? mi crocontroller system memory boot mode an2606 for details.
docid025844 rev 7 27/132 stm32l053x6 stm32l053x8 functional overview 36 3.10 direct memory access (dma) the flexible 7-channel, general-purpose dma is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. the dma controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. each channel is connected to dedicated hardware dma requests, with software trigger support for each channel. configuration is done by software and transfer sizes between source and destination are independent. the dma can be used with the main peripherals: spi, i 2 c, usart, lpuart, general-purpose timers, dac, and adc. 3.11 liquid crystal display (lcd) the lcd drives up to 8 common terminals and 32 segment terminals to drive up to 224 pixels. ? internal step-up converter to guarantee functi onality and contrast control irrespective of v dd . this converter can be deactivated, in which case the v lcd pin is used to provide the voltage to the lcd ? supports static, 1/2, 1/3, 1/4 and 1/8 duty ? supports static, 1/2, 1/3 and 1/4 bias ? phase inversion to reduce power consumption and emi ? up to 8 pixels can be programmed to blink ? unneeded segments and common pins can be used as general i/o pins ? lcd ram can be updated at any time owing to a double-buffer ? the lcd controller can operate in stop mode ? v lcd rails decoupling capability 3.12 analog-to-digita l converter (adc) a native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into stm32l053x6/8 device. it has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference, v lcd voltage measurement). three channels, pa0, pa4 and pa5, are fa st channels, while the others are standard channels. the adc performs conversions in single-shot or scan mode. in sc an mode, automatic conversion is performed on a selected group of analog inputs. the adc frequency is independent from t he cpu frequency, allo wing maximum sampling rate of 1.14 msps even with a low cpu spee d. the adc consumption is low at all frequencies (~25 a at 10 ksps, ~200 a at 1msps). an auto-shutdown function guarantees that the adc is powered off ex cept during the active conversion phase. the adc can be served by the dma controller. it can operate from a supply voltage down to 1.65 v. the adc features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see an2668).
functional overview stm32l053x6 stm32l053x8 28/132 docid025844 rev 7 an analog watchdog feature allows very precis e monitoring of the converted voltage of one, some or all scanned channels. an interrupt is generated when the converted voltage is outside the programmed thresholds. the events generated by the general-purpose timers (timx) can be internally connected to the adc start triggers, to allow the application to synchronize a/d conversions and timers. 3.13 temperature sensor the temperature sensor (t sense ) generates a voltage v sense that varies linearly with temperature. the temperature sensor is internally connec ted to the adc_in18 input channel which is used to convert the sensor output voltage into a digital value. the sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. as the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. to improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by st. the te mperature sensor factory calibration data are stored by st in the system memory area, accessible in read-only mode. 3.13.1 internal voltage reference (v refint ) the internal voltage reference (v refint ) provides a stable (bandgap) voltage output for the adc and comparators. v refint is internally con nected to the adc_in17 input channel. it enables accurate monitoring of the v dd value (when no external voltage, v ref+ , is available for adc). the precise voltage of v refint is individually measured for each part by st during production test and stored in the system memo ry area. it is accessible in read-only mode. table 6. temperature sensor calibration values calibration value name description memory address tsense_cal1 ts adc raw data acquired at temperature of 30 c, v dda = 3 v 0x1ff8 007a - 0x1ff8 007b tsense_cal2 ts adc raw data acquired at temperature of 130 c v dda = 3 v 0x1ff8 007e - 0x1ff8 007f table 7. internal voltage reference measured values calibration value name description memory address vrefint_cal raw data acquired at temperature of 25 c v dda = 3 v 0x1ff8 0078 - 0x1ff8 0079
docid025844 rev 7 29/132 stm32l053x6 stm32l053x8 functional overview 36 3.13.2 v lcd voltage monitoring this embedded hardware feature allows the application to measure the v lcd supply voltage using the internal adc channel adc_in16. as the v lcd voltage may be higher than v dda , and thus outside the adc input range, the adc input is connected to lcd_vlcd2 (which provides 1/3v lcd when the lcd is configured 1/3bias and 1/4v lcd when the lcd is configured 1/4bias or 1/2bias). 3.14 digital-to-analog converter (dac) one 12-bit buffered dac can be used to convert digital signal into analog voltage signal output. an optional amplifier can be used to reduce the output signal impedance. this digital interface supports the following features: ? one data holding register ? left or right data alignment in 12-bit mode ? synchronized update capability ? noise-wave generation ? triangular-wave generation ? dma capability (including the underrun interrupt) ? external triggers for conversion ? input reference voltage v ref+ four dac trigger inputs are used in the stm32l053x6/8. the dac channel is triggered through the timer update outputs that are also connected to different dma channels. 3.15 ultra-low-power comparators and reference voltage the stm32l053x6/8 embed two comparators sharing the same current bias and reference voltage. the reference voltage can be internal or external (coming from an i/o). ? one comparator with ultra low consumption ? one comparator with rail-to-rail inputs, fast or slow mode. ? the threshold can be one of the following: ? dac output ? external i/o pins ? internal reference voltage (v refint ) ? submultiple of internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator. both comparators can wake up the devices from stop mode, and be combined into a window comparator. the internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 a typical).
functional overview stm32l053x6 stm32l053x8 30/132 docid025844 rev 7 3.16 system config uration controller the system configuration cont roller provides the capabilit y to remap some alternate functions on different i/o ports. the highly flexible routing inte rface allows the application firm ware to control the routing of different i/os to the tim2, tim21, tim22 and lp tim timer input captures . it also controls the routing of internal analog si gnals to the usb internal osc illator, adc, comp1 and comp2 and the internal reference voltage v refint . 3.17 touch sensing controller (tsc) the stm32l053x6/8 provide a simple solution for adding capacitive sensing functionality to any application. these devices offer up to 24 ca pacitive sensing channels distributed over 8 analog i/o groups. capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (s uch as glass, plastic). the capacitive variation introduced by the finger (or any conduct ive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. it consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor unt il the voltage across this capa citor has reached a specific threshold. to limit the cpu bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only r equires few external components to operate. the touch sensing controller is fully supported by the stmtouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. table 8. capacitive sensing gpios available on stm32l053x6/8 devices group capacitive sensing signal name pin name group capacitive sensing signal name pin name 1 tsc_g1_io1 pa0 5 tsc_g5_io1 pb3 tsc_g1_io2 pa1 tsc_g5_io2 pb4 tsc_g1_io3 pa2 tsc_g5_io3 pb6 tsc_g1_io4 pa3 tsc_g5_io4 pb7 2 tsc_g2_io1 pa4 (1) 6 tsc_g6_io1 pb11 tsc_g2_io2 pa5 tsc_g6_io2 pb12 tsc_g2_io3 pa6 tsc_g6_io3 pb13 tsc_g2_io4 pa7 tsc_g6_io4 pb14 3 tsc_g3_io1 pc5 7 tsc_g7_io1 pc0 tsc_g3_io2 pb0 tsc_g7_io2 pc1 tsc_g3_io3 pb1 tsc_g7_io3 pc2 tsc_g3_io4 pb2 tsc_g7_io4 pc3
docid025844 rev 7 31/132 stm32l053x6 stm32l053x8 functional overview 36 3.18 timers and watchdogs the ultra-low-power stm32l053x6/8 devices include three general-purpose timers, one low- power timer (lptim), one basic timer, two watchdog timers and the systick timer. table 9 compares the features of the general-purpose and basic timers. 3.18.1 general-purpose timers (tim2, tim21 and tim22) there are three synchronizable general-purpose timers embedded in the stm32l053x6/8 devices (see table 9 for differences). tim2 tim2 is based on 16-bit auto-reload up/down counter. it includes a 16-bit prescaler. it features four independent channels each for input capture/output compare, pwm or one- pulse mode output. the tim2 general-purpose timers can work to gether or with the tim21 and tim22 general- purpose timers via the timer link feature for synchronization or event chaining. their counter can be frozen in debug mode. any of the general-purpose timers can be used to generate pwm outputs. tim2 has independent dma request generation. this timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. 4 tsc_g4_io1 pa9 8 tsc_g8_io1 pc6 tsc_g4_io2 pa10 tsc_g8_io2 pc7 tsc_g4_io3 pa11 tsc_g8_io3 pc8 tsc_g4_io4 pa12 tsc_g8_io4 pc9 1. this gpio offers a reduced touc h sensing sensitivity. it is thus recommended to use it as sampling capacitor i/o. table 8. capacitive sensing gpios available on stm32l053x6/8 devices group capacitive sensing signal name pin name group capacitive sensing signal name pin name table 9. timer feature comparison timer counter resolution counter type prescaler factor dma request generation capture/compare channels complementary outputs tim2 16-bit up, down, up/down any integer between 1 and 65536 yes 4 no tim21, tim22 16-bit up, down, up/down any integer between 1 and 65536 no 2 no tim6 16-bit up any integer between 1 and 65536 yes 0 no
functional overview stm32l053x6 stm32l053x8 32/132 docid025844 rev 7 tim21 and tim22 tim21 and tim22 are based on a 16-bit auto-r eload up/down counter. they include a 16-bit prescaler. they have two independent channels for input capture/output compare, pwm or one-pulse mode output. they can work together and be synchronized with the tim2, full- featured general-purpose timers. they can also be used as simple time bases and be clocked by the lse clock source (32.768 khz) to provide time bases independent from the main cpu clock. 3.18.2 low-power timer (lptim) the low-power timer has an independent clock and is running also in stop mode if it is clocked by lse, lsi or an external clock. it is able to wakeup the devices from stop mode. this low-power timer supports the following features: ? 16-bit up counter with 16-bit autoreload register ? 16-bit compare register ? configurable output: pulse, pwm ? continuous / one shot mode ? selectable software / hardware input trigger ? selectable clock source ? internal clock source: l se, lsi, hsi or apb clock ? external clock source over lptim input (working even with no internal clock source running, used by the pulse counter application) ? programmable digital glitch filter ? encoder mode 3.18.3 basic timer (tim6) this timer can be used as a generic 16-bit ti mebase. it is mainly used for dac trigger generation. 3.18.4 systick timer this timer is dedicated to the os, but could also be used as a standard downcounter. it is based on a 24-bit downcounter with autore load capability and a programmable clock source. it features a maskable system interr upt generation when the counter reaches ?0?. 3.18.5 independent watchdog (iwdg) the independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. it is clocked from an independent 37 khz internal rc and, as it operates independently of the main clock, it can operate in stop and stan dby modes. it can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. it is hardware- or software-configurable through the option bytes. the counter can be frozen in debug mode.
docid025844 rev 7 33/132 stm32l053x6 stm32l053x8 functional overview 36 3.18.6 window watchdog (wwdg) the window watchdog is based on a 7-bit downcounter that can be set as free-running. it can be used as a watchdog to reset the device when a problem occurs. it is clocked from the main clock. it has an early warning interrupt capab ility and the counter can be frozen in debug mode. 3.19 communication interfaces 3.19.1 i 2 c bus two i 2 c interface (i2c1, i2c2) can operate in multimaster or slave modes. each i 2 c interface can support standard mode (sm, up to 100 kbit/s), fast mode (fm, up to 400 kbit/s) and fast mode plus (fm+, up to 1 mbit/s) with 20 ma output drive on some i/os. 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) are also supported as we ll as programmable analog and digital noise filters. in addition, i2c1 provides hardware support for smbus 2.0 and pmbus 1.1: arp capability, host notify protocol, hardware crc (pec) gener ation/verification, timeouts verifications and alert protocol management. i2c1 also has a clock domain independent from the cpu clock, allowing the i2c1 to wake up the mcu from stop mode on address match. each i2c interface can be served by the dma controller. refer to table 11 for an overview of i2c interface features. table 10. comparison of i2c analog and digital filters analog filter digital filter pulse width of suppressed spikes 50 ns programmable length from 1 to 15 i2c peripheral clocks benefits available in stop mode 1. extra filtering capability vs. standard requirements. 2. stable length drawbacks variations depending on temperature, voltage, process wakeup from stop on address match is not available when digital filter is enabled. table 11. stm32l053x6/8 i 2 c implementation i2c features (1) i2c1 i2c2 7-bit addressing mode x x 10-bit addressing mode x x standard mode (up to 100 kbit/s) x x fast mode (up to 400 kbit/s) x x fast mode plus with 20 ma output drive i/os (up to 1 mbit/s) x x (2) independent clock x -
functional overview stm32l053x6 stm32l053x8 34/132 docid025844 rev 7 3.19.2 universal synchronous/asynchr onous receiver tran smitter (usart) the two usart interfaces (usart1, usart2) are able to communicate at speeds of up to 4 mbit/s. they provide hardware management of the cts, rts and rs485 driver enable (de) signals, multiprocessor co mmunication mode, master synchronous communication and single-wire half-duplex communication mode. they also support smartcard communication (iso 7816), irda sir endec, lin master/slave capability, auto baud rate feature and has a clock domain independent from the cpu clock, allowing to wake up the mcu from stop mode using baudrates up to 42 kbaud. all usart interfaces can be served by the dma controller. table 12 for the supported modes and features of usart interfaces. 3.19.3 low-power universal asynchron ous receiver transmitter (lpuart) the devices embed one low-power uart. the lpuart supports asynchronous serial communication with minimum power consumption. it supports half duplex single wire smbus x - wakeup from stop x - 1. x = supported. 2. see table 15: stm32l053x6/8 pi n definitions on page 40 for the list of i/os that feature fast mode plus capability table 11. stm32l053x6/8 i 2 c implementation (continued) i2c features (1) i2c1 i2c2 table 12. usart implementation usart modes/features (1) 1. x = supported. usart1 and usart2 hardware flow control for modem x continuous communication using dma x multiprocessor communication x synchronous mode (2) 2. this mode allows using the usart as an spi master. x smartcard mode x single-wire half-duplex communication x irda sir endec block x lin mode x dual clock domain and wakeup from stop mode x receiver timeout interrupt x modbus communication x auto baud rate detection (4 modes) x driver enable x
docid025844 rev 7 35/132 stm32l053x6 stm32l053x8 functional overview 36 communication and modem operations (c ts/rts). it allows multiprocessor communication. the lpuart has a clock domain independent from the cpu clock. it can wake up the system from stop mode using baudrates up to 46 kbaud. the wakeup events from stop mode are programmable and can be: ? start bit detection ? or any received data frame ? or a specific programmed data frame only a 32.768 khz clock (lse) is needed to allow lpuart communication up to 9600 baud. therefore, even in stop mode, the lpuart can wait for an incoming frame while having an extremely low energy consumption. higher speed clock can be used to reach higher baudrates. lpuart interface can be served by the dma controller. 3.19.4 serial peripheral interface (spi)/inter-integrated sound (i2s) up to two spis are able to communicate at up to 16 mbits/s in slave and master modes in full-duplex and half-duplex communication mo des. the 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. the hardware crc generation/verification support s basic sd card/mmc modes. the usarts with synchronous capabilit y can also be used as spi master. one standard i2s interfaces (multi plexed with spi2) is available. it can operate in master or slave mode, and can be configured to operate wit h a 16-/32-bit resolution as input or output channels. audio sampling frequencies from 8 khz up to 192 khz are supported. when the i2s interfaces is configured in master mode, th e master clock can be output to the external dac/codec at 256 times the sampling frequency. the spis can be served by the dma controller. refer to table 13 for the differences between spi1 and spi2. table 13. spi/i2s implementation spi features (1) 1. x = supported. spi1 spi2 hardware crc calculation x x i2s mode - x ti mode x x
functional overview stm32l053x6 stm32l053x8 36/132 docid025844 rev 7 3.19.5 universal se rial bus (usb) the stm32l053x6/8 embed a full-speed usb device peripheral compliant with the usb specification version 2.0. the internal usb phy supports usb fs signaling, embedded dp pull-up and also battery charging detection according to battery charging specification revision 1.2. the usb interface implements a full-speed (12 mbit/s) function interface with added support for usb 2.0 link power manageme nt. it has software-configurable endpoint setting with packet memory up to 1 kb and sus pend/resume support. it requires a precise 48 mhz clock which can be generated from the internal main pll (the clock source must use a hse crystal oscillator) or by the intern al 48 mhz oscillator in automatic trimming mode. the synchroniz ation for this oscillator can be taken from the usb data stream itself (sof signalization) which a llows crystal-less operation. 3.20 clock recover y system (crs) the stm32l053x6/8 embed a special block which allows automatic trimming of the internal 48 mhz oscillator to guarantee its optimal accuracy over the whol e device operational range. this automatic trimming is based on th e external synchronization signal, which could be either derived from usb sof signalization, from lse oscilla tor, from an external signal on crs_sync pin or generated by user software. for faster lock-in durin g startup it is also possible to combine automatic tri mming with manual trimming action. 3.21 cyclic redundancy che ck (crc) calculation unit the crc (cyclic redundancy check) calculati on unit is used to get a crc code using a configurable generator polynomial value and size. among other applications, crc-based techniques are used to verify data transmission or storage integrity. in the scope of the en/iec 60335-1 standard, they offer a means of verifying the flash memory integrity. the crc calculation unit helps compute a signature of the software during runtime, to be compar ed with a reference signature generated at linktime and stored at a given memory location. 3.22 serial wire debug port (sw-dp) an arm sw-dp interface is provided to allow a serial wire debugging tool to be connected to the mcu.
docid025844 rev 7 37/132 stm32l053x6 stm32l053x8 pin descriptions 48 4 pin descriptions figure 3. stm32l053x6/8 lqfp64 pinout - 10 x 10 mm 1. the above figure shows the package top view. 2. i/o pin supplied by vdd_usb.                                                                  9 /&' 3& 3&26&b,1 3&26&b287 3+26&b,1 3+26&b287 1567 3& 3& 3& 3& 966$ 9''$ 3$ 3$ 3$ 9'' 966  3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ 9''b86%  966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3% 3% 966 9'' /4)3 069
pin descriptions stm32l053x6 stm32l053x8 38/132 docid025844 rev 7 figure 4. stm32l053x6/8 tfbga64 ballout - 5x 5 mm 1. the above figure shows the package top view. 2. i/o pin supplied by vdd_usb. 3& 26& b,1 3& 26& b287 3+ 26&b,1 06y9 $ % & ' ( ) * +       3+ 26&b 287 1567 966$ 95()  9''$ 3& 9/&' 966 9'' 3& 3& 3$ 3$ 3% 3% 3% 3$ 3$ 3$ 3% %227  3' 3& 3& 3$ 3% 3% 3& 3$ 3$ 3$ 3% 966 966 966 3$ 3& 3& 9'' 9'' 9''b 86% 3& 3& 3$ 3$ 3% 3& 3% 3% 3$ 3$ 3% 3% 3% 3% 3$ 3$ 3& 3& 3% 3%
docid025844 rev 7 39/132 stm32l053x6 stm32l053x8 pin descriptions 48 figure 5. stm32l053x6/8 lqfp48 pinout - 7 x 7 mm 1. the above figure shows the package top view. 2. i/o pin supplied by vdd_usb.                                                 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 966 9'' 9''b86% 966  3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 9 /&' 3& 3&26&b,1 3&26&b287 3+26&b,1 3+26&b287 1567 966$ 9''$ 3$ 3$ 3$ 9'' 966  3% 3% %227 3% 3% 3% 3% 3% 3$ 3$ /4)3 069 table 14. legend/abbreviations used in the pinout table name abbreviation definition pin name unless otherwise specified in brackets be low the pin name, the pin function during and after reset is the same as the actual pin name pin type s supply pin i input only pin i/o input / output pin i/o structure ft 5 v tolerant i/o ftf 5 v tolerant i/o, fm+ capable tc standard 3.3v i/o b dedicated boot0 pin rst bidirectional reset pin with embedded weak pull-up resistor notes unless otherwise specified by a note, all i/os are set as floating inputs during and after reset.
pin descriptions stm32l053x6 stm32l053x8 40/132 docid025844 rev 7 pin functions alternate functions functions selected through gpiox_afr registers additional functions functions directly selected/enabl ed through peripheral registers table 14. legend/abbreviations used in the pinout table (continued) name abbreviation definition table 15. stm32l053x6/8 pin definitions pin number pin name (function after reset) pin type i/o structure notes alternate functions a dditional functions lqfp48 lqfp64 tfbga64 1 1 b2 vlcd s - - - - 2 2 a2 pc13 i/o ft - - rtc_tamp1/rtc_ts/rt c_out/wkup2 33a1 pc14-osc32_in (pc14) i/o ft - - osc32_in 44b1 pc15- osc32_out (pc15) i/o tc - - osc32_out 55c1 ph0-osc_in (ph0) i/o tc - usb_crs_sync osc_in 66d1 ph1-osc_out (ph1) i/o tc - - osc_out 7 7 e1 nrst i/o rst - - - - 8 e3 pc0 i/o ft - lptim1_in1, lcd_seg18, eventout, tsc_g7_io1 adc_in10 - 9 e2 pc1 i/o ft - lptim1_out, lcd_seg19, eventout, tsc_g7_io2 adc_in11 - 10 f2 pc2 i/o ft - lptim1_in2, lcd_seg20, spi2_miso/i2s2_mck, tsc_g7_io3 adc_in12 - 11 - pc3 i/o ft - lptim1_etr, lcd_seg21, spi2_mosi/i2s2_sd, tsc_g7_io4 adc_in13
docid025844 rev 7 41/132 stm32l053x6 stm32l053x8 pin descriptions 48 8 12 f1 vssa s - - - - - - g1 vref+ s - - - - 913h1 vdda s - - - - 10 14 g2 pa0 i/o tc - tim2_ch1, tsc_g1_io1, usart2_cts, tim2_etr, comp1_out comp1_inm6, adc_in0, rtc_tamp2/wkup1 11 15 h2 pa1 i/o ft - eventout, lcd_seg0, tim2_ch2, tsc_g1_io2, usart2_rts_de, tim21_etr comp1_inp, adc_in1 12 16 f3 pa2 i/o ft - tim21_ch1, lcd_seg1, tim2_ch3, tsc_g1_io3, usart2_tx, comp2_out comp2_inm6, adc_in2 13 17 g3 pa3 i/o ft - tim21_ch2, lcd_seg2, tim2_ch4, tsc_g1_io4, usart2_rx comp2_inp, adc_in3 -18c2 vss s - - - -19d2 vdd s - - - 14 20 h3 pa4 i/o tc (1) spi1_nss, tsc_g2_io1, usart2_ck, tim22_etr comp1_inm4, comp2_inm4, adc_in4, dac_out 15 21 f4 pa5 i/o tc - spi1_sck, tim2_etr, tsc_g2_io2, tim2_ch1 comp1_inm5, comp2_inm5, adc_in5 16 22 g4 pa6 i/o ft - spi1_miso, lcd_seg3, tsc_g2_io3, lpuart1_cts, tim22_ch1, eventout, comp1_out adc_in6 17 23 h4 pa7 i/o ft - spi1_mosi, lcd_seg4, tsc_g2_io4, tim22_ch2, eventout, comp2_out adc_in7 - 24 h5 pc4 i/o ft - eventout, lcd_seg22, lpuart1_tx adc_in14 table 15. stm32l053x6/8 pin definitions (continued) pin number pin name (function after reset) pin type i/o structure notes alternate functions a dditional functions lqfp48 lqfp64 tfbga64
pin descriptions stm32l053x6 stm32l053x8 42/132 docid025844 rev 7 - 25 h6 pc5 i/o ft - lcd_seg23, lpuart1_rx, tsc_g3_io1 adc_in15 18 26 f5 pb0 i/o ft - eventout, lcd_seg5, tsc_g3_io2 lcd_vlcd3, adc_in8, vref_out 19 27 g5 pb1 i/o ft - lcd_seg6, tsc_g3_io3, lpuart1_rts_de adc_in9, vref_out 20 28 g6 pb2 i/o ft - lptim1_out, tsc_g3_io4 lcd_vlcd1 21 29 g7 pb10 i/o ft - lcd_seg10, tim2_ch3, tsc_sync, lpuart1_tx, spi2_sck, i2c2_scl - 22 30 h7 pb11 i/o ft - eventout, lcd_seg11, tim2_ch4, tsc_g6_io1, lpuart1_rx, i2c2_sda - 23 31 d6 vss s - - - 24 32 e5 vdd s - - - 25 33 h8 pb12 i/o ft - spi2_nss/i2s2_ws, lcd_seg12, lpuart1_rts_de, tsc_g6_io2, i2c2_smba, eventout lcd_vlcd2 26 34 g8 pb13 i/o ftf - spi2_sck/i2s2_ck, lcd_seg13, tsc_g6_io3, lpuart1_cts, i2c2_scl, tim21_ch1 - 27 35 f8 pb14 i/o ftf - spi2_miso/i2s2_mck, lcd_seg14, rtc_out, tsc_g6_io4, lpuart1_rts_de, i2c2_sda, tim21_ch2 - 28 36 f7 pb15 i/o ft - spi2_mosi/i2s2_sd, lcd_seg15, rtc_refin - table 15. stm32l053x6/8 pin definitions (continued) pin number pin name (function after reset) pin type i/o structure notes alternate functions a dditional functions lqfp48 lqfp64 tfbga64
docid025844 rev 7 43/132 stm32l053x6 stm32l053x8 pin descriptions 48 - 37 f6 pc6 i/o ft - tim22_ch1, lcd_seg24, tsc_g8_io1 - - 38 e7 pc7 i/o ft - tim22_ch2, lcd_seg25, tsc_g8_io2 - - 39 e8 pc8 i/o ft - tim22_etr, lcd_seg26, tsc_g8_io3 - - 40 d8 pc9 i/o ft - tim21_etr, lcd_seg27, usb_noe, tsc_g8_io4 - 29 41 d7 pa8 i/o ft - mco, lcd_com0, usb_crs_sync, eventout, usart1_ck - 30 42 c7 pa9 i/o ft - mco, lcd_com1, tsc_g4_io1, usart1_tx - 31 43 c6 pa10 i/o ft - lcd_com2, tsc_g4_io2, usart1_rx - 32 44 c8 pa11 i/o ft (2) spi1_miso, eventout, tsc_g4_io3, usart1_cts, comp1_out usb_dm 33 45 b8 pa12 i/o ft (2) spi1_mosi, eventout, tsc_g4_io4, usart1_rts_de, comp2_out usb_dp 34 46 a8 pa13 i/o ft - swdio, usb_noe - 35 47 d5 vss s - - - 36 48 e6 vdd_usb s - - - 37 49 a7 pa14 i/o ft - swclk, usart2_tx - 38 50 a6 pa15 i/o ft - spi1_nss, lcd_seg17, tim2_etr, eventout, usart2_rx, tim2_ch1 - - 51 b7 pc10 i/o ft - lpuart1_tx, lcd_com4/lcd_seg28/ lcd_seg40 - table 15. stm32l053x6/8 pin definitions (continued) pin number pin name (function after reset) pin type i/o structure notes alternate functions a dditional functions lqfp48 lqfp64 tfbga64
pin descriptions stm32l053x6 stm32l053x8 44/132 docid025844 rev 7 - 52 b6 pc11 i/o ft - lpuart1_rx, lcd_com5/lcd_seg29/ lcd_seg41 - - 53 c5 pc12 i/o ft - lcd_com6/lcd_seg30/ lcd_seg42 - - 54 b5 pd2 i/o ft - lpuart1_rts_de, lcd_com7/lcd_seg31/ lcd_seg43 - 39 55 a5 pb3 i/o ft - spi1_sck, lcd_seg7, tim2_ch2, tsc_g5i_o1, eventout comp2_inn 40 56 a4 pb4 i/o ft - spi1_miso, lcd_seg8, eventout, tsc_g5_io2, tim22_ch1 comp2_inp 41 57 c4 pb5 i/o ft - spi1_mosi, lcd_seg9, lptim1_in1, i2c1_smba, tim22_ch2 comp2_inp 42 58 d3 pb6 i/o ftf - usart1_tx, i2c1_scl, lptim1_etr, tsc_g5_io3 comp2_inp 43 59 c3 pb7 i/o ftf - usart1_rx, i2c1_sda, lptim1_in2, tsc_g5_io4 comp2_inp, pvd_in 44 60 b4 boot0 i b - - - 45 61 b3 pb8 i/o ftf - lcd_seg16, tsc_sync, i2c1_scl - 46 62 a3 pb9 i/o ftf - lcd_com3, eventout, i2c1_sda, spi2_nss/i2s2_ws - 47 63 d4 vss s - - - - 48 64 e4 vdd s - - - - 1. this gpio offers a reduced touch sens ing sensitivity. it is thus recommended to use it as sampling capacitor i/o. 2. these pins are powered by vdd_usb. for all characteristics that refer to v dd , v dd_usb must be used instead. table 15. stm32l053x6/8 pin definitions (continued) pin number pin name (function after reset) pin type i/o structure notes alternate functions a dditional functions lqfp48 lqfp64 tfbga64
pin descriptions stm32l053x6 stm32l053x8 45/132 docid025844 rev 7 table 16. alternate function port a port af0 af1 af2 af3 af4 af5 af6 af7 spi1/tim21/sys_a f/eventout/ lcd usb/tim2/ eventout/ tsc/ eventout usart1/2/3 tim2/21/22 eventout comp1/2 port a pa0 - - tim2_ch1 tsc_g1_io1 usart2_cts tim2_etr - comp1_out pa1 eventout lcd_seg0 tim2_ch2 tsc_g1_io2 usart2_rts_ de tim21_etr - - pa2 tim21_ch1 lcd_seg1 tim2_ch3 tsc_g1_io3 usart2_tx - - comp2_out pa3 tim21_ch2 lcd_seg2 tim2_ch4 tsc_g1_io4 usart2_rx - - - pa4 (1) spi1_nss - - tsc_g2_io1 usart2_ck tim22_etr - - pa5 spi1_sck - tim2_etr tsc_g2_io2 - tim2_ch1 - - pa6 spi1_miso lcd_seg3 - tsc_g2_io3 l puart1_cts tim22_ ch1 eventout comp1_out pa7 spi1_mosi lcd_seg4 - tsc_g2_ io4 - tim22_ch2 eventout comp2_out pa8 mco lcd_com0 usb_crs_sync eventout usart1_ck - - - pa9 mco lcd_com1 - tsc_g4_io1 usart1_tx - - - pa10 - lcd_com2 - tsc_g4_io2 usart1_rx - - - pa11 spi1_miso - eventout tsc_g4_io3 usart1_cts - - comp1_out pa12 spi1_mosi - eventout tsc_g4_io4 usart1_rts_ de - - comp2_out pa13 swdio - usb_noe - - - - - pa14 swclk - - - usart2_tx - - - pa15 spi1_nss lcd_seg17 tim2_etr eventout usart2_rx tim2_ch1 - - 1. this gpio offers a reduced touch sens ing sensitivity. it is thus recommended to use it as sampling capacitor i/o.
stm32l053x6 stm32l053x8 pin descriptions docid025844 rev 7 46/132 table 17. alternate function port b port af0 af1 af2 af3 af4 af5 af6 spi1/spi2/i2s2/ usart1/ eventout/ i2c1/lcd lpuart1/lptim /tim2/sys_af/ eventout i2c1/tsc i2c1/tim22/ eventout/ lpuart1 spi2/i2s2/i2c2 i2c2/tim21/ eventout port b pb0 eventout lcd_seg5 - tsc_g3_io2 - - - pb1 - lcd_seg6 - tsc_g3_io3 lpuart1_rts_ de -- pb2 - - lptim1_out tsc_g3_io4 - - - pb3 spi1_sck lcd_seg7 tim2_ch2 tsc_g5i_o1 eventout - - pb4 spi1_miso lcd_seg8 evento ut tsc_g5_io2 tim22_ch1 - - pb5 spi1_mosi lcd_seg9 lptim1_i n1 i2c1_smba tim22_ch2 - - pb6 usart1_tx i2c1_scl lptim1_etr tsc_g5_io3 - - - pb7 usart1_rx i2c1_sda lptim1_in2 tsc_g5_io4 - - - pb8 - lcd_seg16 - tsc_sync i2c1_scl - - pb9 - lcd_com3 eventout - i2c1_sda spi2_nss/i2s2_ ws - pb10 - lcd_seg10 tim2_ch3 tsc_sync l puart1_tx spi2_sck i2c2_scl pb11 eventout lcd_seg11 tim2_ch4 ts c_g6_io1 lpuart1_rx - i2c2_sda pb12 spi2_nss/i2s2_ws lcd_seg12 lpuart1_rts_ de tsc_g6_io2 - i2c2_smba eventout pb13 spi2_sck/i2s2_ck lcd_seg13 - tsc_g 6_io3 lpuart1_cts i2c2_scl tim21_ch1 pb14 spi2_miso/i2s2_mck l cd_seg14 rtc_out tsc_g6_io4 lpuart1_rts_ de i2c2_sda tim21_ch2 pb15 spi2_mosi/i2s2_sd lcd_seg15 rtc_refin - - - -
pin descriptions stm32l053x6 stm32l053x8 47/132 docid025844 rev 7 table 18. alternate function port c port af0 af1 af2 af3 lpuart1/lptim/ tim21/12/ eventout/ lcd spi2/i2s2/usb/ lpuart1/ eventout tsc port c pc0 lptim1_in1 lcd_seg18 eventout tsc_g7_io1 pc1 lptim1_out lcd_seg19 eventout tsc_g7_io2 pc2 lptim1_in2 lcd_seg20 spi2_miso/i2s2_mck tsc_g7_io3 pc3 lptim1_etr lcd_seg21 spi 2_mosi/i2s2_sd tsc_g7_io4 pc4 eventout lcd_seg22 lpuart1_tx - pc5 - lcd_seg23 lpuart1_rx tsc_g3_io1 pc6 tim22_ch1 lcd_seg24 - tsc_g8_io1 pc7 tim22_ch2 lcd_seg25 - tsc_g8_io2 pc8 tim22_etr lcd_seg26 - tsc_g8_io3 pc9 tim21_etr lcd_seg27 usb_noe tsc_g8_io4 pc10 lpuart1_tx lcd_com4/lcd_seg28 - - pc11 lpuart1_rx lcd_com5/lcd_seg29 - - pc12 - lcd_com6/lcd_seg30 - - pc13---- pc14---- pc15---- table 19. alternate function port d port af0 af1 lpuart1 lcd port d pd2 lpuart1_rts_de lcd_com7/lcd_seg31
stm32l053x6 stm32l053x8 pin descriptions docid025844 rev 7 48/132 table 20. alternate function port h port af0 usb port h ph0 usb_crs_sync ph1 -
docid025844 rev 7 49/132 stm32l053x6 stm32l053x8 memory mapping 49 5 memory mapping figure 6. memory map 069 5hvhuyhg )/0/24         [)))))))) 3hulskhudov 65$0 )odvkv\vwhp phpru\ reserved 6\vwhp phpru\ 2swlrqe\whv [( &lash system memoryor 32!- demendingon "//4 configuration [ [( [& [$ [ [ [ [ [ [ [))))))) reserved &2'( !0" !0" reserved [ [ [ [ reserved [ !(" [ reserved [))) [)) &ruwh[0 shulskhudov
electrical characteristics stm32l053x6 stm32l053x8 50/132 docid025844 rev 7 6 electrical characteristics 6.1 parameter conditions unless otherwise specified, all voltages are referenced to v ss . 6.1.1 minimum and maximum values unless otherwise specified the minimum and ma ximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at t a = 25 c and t a = t a max (given by the selected temperature range). data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3 ). 6.1.2 typical values unless otherwise specified, typical data are based on t a = 25 c, v dd = 3.6 v (for the 1.65 v v dd 3.6 v voltage range). they are given only as design guidelines and are not tested. typical adc accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2 ) . 6.1.3 typical curves unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 loading capacitor the loading conditions used for pin parameter measurement are shown in figure 7 . 6.1.5 pin input voltage the input voltage measurement on a pin of the device is described in figure 8 . figure 7. pin loading conditions figure 8. pin input voltage dlf & s) 0&8slq dlf 0&8slq 9 ,1
docid025844 rev 7 51/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.1.6 power supply scheme figure 9. power supply scheme 06y9 $qdorj 5&3//&203 ? 9 '' *3,2v 287 ,1 .huqhoorjlf &38 'ljlwdo  0hprulhv  6wdqge\srzhuflufxlwu\ 26&57&:dnhxs orjlf57&edfnxs uhjlvwhuv 1?q) ??) 5hjxodwru 9 66 9 ''$ 9 5() 9 5() 9 66$ $'& '$& /hyhovkliwhu ,2 /rjlf 9 '' q) ?) 9 5() q) ?) 9 ''$ 9 /&' 9 ''b86% /&' 86% wudqvfhlyhu 9 66 9 66
electrical characteristics stm32l053x6 stm32l053x8 52/132 docid025844 rev 7 6.1.7 optional lcd power supply scheme figure 10. optional lcd power supply scheme 1. option 1: lcd power supply is provided by a dedicated vlcd supply source, vsel switch is open. 2. option 2: lcd power supply is provided by the in ternal step-up converter, vsel switch is closed, an external capacitance is needed for co rrect behavior of this converter. 6.1.8 current consumption measurement figure 11. current consumption measurement scheme 06y9 9 '' 1[q) [?) 6whsxs &rqyhuwhu 9 66 9 '' q) 9 /&' 9 /&' & (;7 /&' 96(/ 2swlrq 2swlrq 06y9 1[9'' ,'' 1?q) ??) 1[966 9''$
docid025844 rev 7 53/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.2 absolute maximum ratings stresses above the absolute maximum ratings listed in table 21: voltage characteristics , table 22: current characteristics , and table 23: thermal characteristics may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these conditions is not implied. exposure to maximum rating conditions for extended periods may affect device reliability. device mission profile (application conditions) is compliant with jedec jesd47 qualificat ion standard. extended mission profiles are available on demand. table 21. voltage characteristics symbol definition min max unit v dd ?v ss external main supply voltage (including v dda , v dd_usb , v dd ) (1) 1. all main power (v dd ,v dd_usb , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. ?0.3 4.0 v v in (2) 2. v in maximum must always be respected. refer to table 22 for maximum allowed injected current values. input voltage on ft and ftf pins v ss ? 0.3 v dd +4.0 input voltage on tc pins v ss ? 0.3 4.0 input voltage on boot0 v ss v dd + 4.0 input voltage on any other pin v ss ? 0.3 4.0 | v dd | variations between different v ddx power pins - 50 mv |v dda -v ddx | variations between any v ddx and v dda power pins (3) 3. it is recommended to power v dd and v dda from the same source. a maximum difference of 300 mv between v dd and v dda can be tolerated during power-up and device operation. v dd_usb is independent from v dd and v dda : its value does not need to respect this rule. - 300 | v ss | variations between all different ground pins - 50 v ref+ ?v dda allowed voltage difference for v ref+ > v dda -0.4v v esd(hbm) electrostatic discharge voltage (human body model) see section 6.3.11
electrical characteristics stm32l053x6 stm32l053x8 54/132 docid025844 rev 7 table 22. current characteristics symbol ratings max. unit i vdd (2) total current into sum of all v dd power lines (source) (1) 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. 105 ma i vss (2) 2. this current consumption must be correctly distri buted over all i/os and control pins. the total output current must not be sunk/sourced between two consecut ive power supply pins referring to high pin count lqfp packages. total current out of sum of all v ss ground lines (sink) (1) 105 i vdd_usb total current into v dd_usb power lines (source) 25 i vdd(pin) maximum current into each v dd power pin (source) (1) 100 i vss(pin) maximum current out of each v ss ground pin (sink) (1) 100 i io output current sunk by any i/o and control pin except ftf pins 16 output current sunk by ftf pins 22 output current sourced by any i/o and control pin -16 i io(pin) total output current sunk by sum of all ios and control pins except pa11 and pa12 (2) 90 total output current sunk by pa11 and pa12 25 total output current sourced by sum of all ios and control pins (2) -90 i inj(pin) injected current on ft, ftf, rst and b pins -5/+0 (3) 3. positive current injection is not possible on these i/os. a negative injection is induced by v in v dd while a negative injection is induced by v in < v ss . i inj(pin) must never be exceeded. refer to table 21: voltage characteristics for the maximum allowed input voltage values. i inj(pin) total injected current (sum of all i/o and control pins) (5) 5. when several inputs are submitted to a current injection, the maximum i inj(pin) is the absolute sum of the positive and negative injected currents (instantaneous values). 25 table 23. thermal characteristics symbol ratings value unit t stg storage temperature range ?65 to +150 c t j maximum junction temperature 150 c
docid025844 rev 7 55/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.3 operating conditions 6.3.1 general operating conditions table 24. general operating conditions symbol parameter conditions min max unit f hclk internal ahb clock frequency - 0 32 mhz f pclk1 internal apb1 clock frequency - 0 32 f pclk2 internal apb2 clock frequency - 0 32 v dd standard operating voltage bor detector disabled 1.65 3.6 v bor detector enabled, at power-on 1.8 3.6 bor detector disabled, after power-on 1.65 3.6 v dda analog operating voltage (dac not used) must be the same voltage as v dd (1) 1.65 3.6 v v dda analog operating voltage (all features) must be the same voltage as v dd (1) 1.8 3.6 v v dd_us b standard operating voltage, usb domain (2) usb peripheral used 3.0 3.6 v usb peripheral not used 1.65 3.6 v in input voltage on ft, ftf and rst pins (3) 2.0 v v dd 3.6 v -0.3 5.5 v 1.65 v v dd 2.0 v -0.3 5.2 input voltage on boot0 pin - 0 5.5 input voltage on tc pin - -0.3 v dd +0.3 p d power dissipation at t a = 85 c (range 6) or t a =105 c (rage 7) (4) tfbga64 package - 327 mw lqfp64 package - 444 lqfp48 package - 363 power dissipation at t a = 125 c (range 3) (4) tfbga64 package - 81 lqfp64 package - 111 lqfp48 package - 91 t a temperature range maximum power dissipation (range 6) ?40 85 c maximum power dissipation (range 7) ?40 105 maximum power dissipation (range 3) ?40 125 t j junction temperature range (range 6) -40 c t a 85 ?40 105 junction temperature range (range 7) -40 c t a 105 c ?40 125 junction temperature range (range 3) -40 c t a 125 c ?40 130 1. it is recommended to power v dd and v dda from the same source. a maximum difference of 300 mv between v dd and v dda can be tolerated during power-up and normal operation.
electrical characteristics stm32l053x6 stm32l053x8 56/132 docid025844 rev 7 2. v dd_usb must respect the following conditions: - when v dd is powered-on (v dd < v dd_min ), v dd_usb should be always lower than v dd. - when v dd is powered-down (v dd < v dd_min ), v dd_usb should be always lower than v dd. - in operating mode, v dd_usb could be lower or higher v dd. - if the usb is not used, v dd_usb must range from v dd_min to v dd_max to be able to use pa11 and pa12 as standard i/os. 3. to sustain a voltage higher than v dd +0.3v, the internal pull-up/pull-down resistors must be disabled. 4. if t a is lower, higher p d values are allowed as long as t j does not exceed t j max (see table 85: thermal characteristics on page 123 ).
docid025844 rev 7 57/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.3.2 embedded reset and power control block characteristics the parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in table 24 . table 25. embedded reset and power control block characteristics symbol parameter conditions min typ max unit t vdd (1) v dd rise time rate bor detector enabled 0 - s/v bor detector disabled 0 - 1000 v dd fall time rate bor detector enabled 20 - bor detector disabled 0 - 1000 t rsttempo (1) reset temporization v dd rising, bor enabled - 2 3.3 ms v dd rising, bor disabled (2) 0.4 0.7 1.6 v por/pdr power-on/power down reset threshold falling edge 1 1.5 1.65 v rising edge 1.3 1.5 1.65 v bor0 brown-out reset threshold 0 falling edge 1.67 1.7 1.74 rising edge 1.69 1.76 1.8 v bor1 brown-out reset threshold 1 falling edge 1.87 1.93 1.97 rising edge 1.96 2.03 2.07 v bor2 brown-out reset threshold 2 falling edge 2.22 2.30 2.35 rising edge 2.31 2.41 2.44 v bor3 brown-out reset threshold 3 falling edge 2.45 2.55 2.6 rising edge 2.54 2.66 2.7 v bor4 brown-out reset threshold 4 falling edge 2.68 2.8 2.85 rising edge 2.78 2.9 2.95 v pvd0 programmable voltage detector threshold 0 falling edge 1.8 1.85 1.88 rising edge 1.88 1.94 1.99 v pvd1 pvd threshold 1 falling edge 1.98 2.04 2.09 rising edge 2.08 2.14 2.18 v pvd2 pvd threshold 2 falling edge 2.20 2.24 2.28 rising edge 2.28 2.34 2.38 v pvd3 pvd threshold 3 falling edge 2.39 2.44 2.48 rising edge 2.47 2.54 2.58 v pvd4 pvd threshold 4 falling edge 2.57 2.64 2.69 rising edge 2.68 2.74 2.79 v pvd5 pvd threshold 5 falling edge 2.77 2.83 2.88 rising edge 2.87 2.94 2.99
electrical characteristics stm32l053x6 stm32l053x8 58/132 docid025844 rev 7 6.3.3 embedded internal reference voltage the parameters given in table 27 are based on characterization results, unless otherwise specified. v pvd6 pvd threshold 6 falling edge 2.97 3.05 3.09 v rising edge 3.08 3.15 3.20 v hyst hysteresis voltage bor0 threshold - 40 - mv all bor and pvd thresholds excepting bor0 -100- 1. guaranteed by characterization results. 2. valid for device version without bor at power up. please see option "d" in orderi ng information scheme for more details. table 25. embedded reset and power control block characteristics (continued) symbol parameter conditions min typ max unit table 26. embedded internal reference voltage calibration values calibration value name description memory address vrefint_cal raw data acquired at temperature of 25 c v dda = 3 v 0x1ff8 0078 - 0x1ff8 0079 table 27. embedded internal reference voltage (1) symbol parameter conditions min typ max unit v refint out (2) internal reference voltage ? 40 c < t j < +125 c 1.202 1.224 1.242 v t vrefint internal reference startup time - - 2 3 ms v vref_meas v dda and v ref+ voltage during v refint factory measure -2.9933.01v a vref_meas accuracy of factory-measured v refint value (3) including uncertainties due to adc and v dda /v ref+ values -- 5mv t coeff (4) temperature coefficient ?40 c < t j < +125 c - 25 100 ppm/c a coeff (4) long-term stability 1000 hours, t= 25 c - - 1000 ppm v ddcoeff (4) voltage coefficient 3.0 v < v dda < 3.6 v - - 2000 ppm/v t s_vrefint (4)(5) adc sampling time when reading the internal reference voltage -510-s t adc_buf (4) startup time of reference voltage buffer for adc ---10s i buf_adc (4) consumption of reference voltage buffer for adc - - 13.5 25 a i vref_out (4) vref_out output current (6) ---1a c vref_out (4) vref_out output load - - - 50 pf
docid025844 rev 7 59/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.3.4 supply current characteristics the current consumption is a function of several parameters and factors such as the operating voltage, temperature, i/o pin loadi ng, device software conf iguration, operating frequencies, i/o pin switching rate, program lo cation in memory and executed binary code. the current consumption is measured as described in figure 11: current consumption measurement scheme . all run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equival ent to dhrystone 2.1 code if not specified otherwise. the current consumption values are derived from the tests performed under ambient temperature and v dd supply voltage conditions summarized in table 24: general operating conditions unless otherwis e specified. the mcu is placed under the following conditions: ? all i/o pins are configured in analog input mode ? all peripherals are disabled ex cept when explicitly mentioned ? the flash memory access time and prefetch is adjusted depending on fhclk frequency and voltage range to provide t he best cpu performance unless otherwise specified. ? when the peripherals are enabled f apb1 = f apb2 = f apb ? when pll is on, the pll inputs are equal to hsi = 16 mhz (if internal clock is used) or hse = 16 mhz (if hse bypass mode is used) ? the hse user clock applied to osci_in input follows the characteristic specified in table 41: high-speed external user clock characteristics ? for maximum current consumption v dd = v dda = 3.6 v is applied to all supply pins ? for typical current consumption v dd = v dda = 3.0 v is applied to all supply pins if not specified otherwise the parameters given in table 49 , table 24 and table 25 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 24 . i lpbuf (4) consumption of reference voltage buffer for vref_out and comp - - 730 1200 na v refint_div1 (4) 1/4 reference voltage - 24 25 26 % v refint v refint_div2 (4) 1/2 reference voltage - 49 50 51 v refint_div3 (4) 3/4 reference voltage - 74 75 76 1. refer to table 39: peripheral current c onsumption in stop and standby mode for the value of the internal reference current consumption (i refint ). 2. guaranteed by test in production. 3. the internal v ref value is individually measured in produc tion and stored in dedicated eeprom bytes. 4. guaranteed by design. 5. shortest sampling time can be determined in the application by multiple iterations. 6. to guarantee less than 1% vref_out deviation. table 27. embedded internal reference voltage (1) (continued) symbol parameter conditions min typ max unit
electrical characteristics stm32l053x6 stm32l053x8 60/132 docid025844 rev 7 table 28. current consumption in run mode, code with data processing running from flash symbol parameter conditions f hclk typ max (1) unit i dd (run from flash) supply current in run mode, code executed from flash f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v vos[1:0]=11 1 mhz 165 230 a 2 mhz 290 360 4 mhz 555 630 range 2, v core =1.5 v, vos[1:0]=10, 4 mhz 0.665 0.74 ma 8 mhz 1.3 1.4 16 mhz 2.6 2.8 range 1, v core =1.8 v, vos[1:0]=01 8 mhz 1.55 1.7 16 mhz 3.1 3.4 32 mhz 6.3 6.8 msi clock range 3, v core =1.2 v, vos[1:0]=11 65 khz 36.5 110 a 524 khz 99.5 190 4.2 mhz 620 700 hsi clock range 2, v core =1.5 v, vos[1:0]=10, 16 mhz 2.6 2.9 ma range 1, v core =1.8 v, vos[1:0]=01 32 mhz 6.25 7 1. guaranteed by characterization result s at 125 c, unless otherwise specified. 2. oscillator bypassed (hsebyp = 1 in rcc_cr register). table 29. current consumption in run mode vs code type, code with data processing running from flash symbol parameter conditions f hclk typ unit i dd (run from flash) supply current in run mode, code executed from flash f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (1) range 3, v core =1.2 v, vos[1:0]=11 dhrystone 4 mhz 555 a coremark 585 fibonacci 440 while(1) 355 while(1), prefetch off 353 range 1, v core =1.8 v, vos[1:0]=01 dhrystone 32 mhz 6.3 ma coremark 6.3 fibonacci 6.55 while(1) 5.4 while(1), prefetch off 5.2 1. oscillator bypassed (hsebyp = 1 in rcc_cr register).
docid025844 rev 7 61/132 stm32l053x6 stm32l053x8 electrical characteristics 112 figure 12. i dd vs v dd , at t a = 25/55/85/105 c, run mode, code running from flash memory, range 2, hse, 1ws figure 13. i dd vs v dd , at t a = 25/55/85/105 c, run mode, code running from flash memory, range 2, hsi16, 1ws 06y9 z????}v?xrt^r?? z????}v?xrt^r?? z????}v?xrt^t?? z????}v?xrt^r?  x? x x? ?x ?x? ?x x?= ?x= ?x?= ?xe= ?x= ?x?= ?x= ?x?=  ?xe= ?x= /~u s~s 06y9 ,'' p$  9'' 9  'ku\vwrqh:6?& 'ku\vwrqh:6?& 'ku\vwrqh:6?& z????}v?xrt^r?  x? x x? ?x ?x? ?x ( ( ( ( ( ( ( (  ( (
electrical characteristics stm32l053x6 stm32l053x8 62/132 docid025844 rev 7 table 30. current consumption in run mode, code with data processing running from ram symbol parameter conditions f hclk typ max (1) unit i dd (run from ram) supply current in run mode, code executed from ram, flash switched off f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v, vos[1:0]=11 1 mhz 135 170 a 2 mhz 240 270 4 mhz 450 480 range 2, v core =1.5 ,v, vos[1:0]=10 4 mhz 0.52 0.6 ma 8 mhz 1 1.2 16 mhz 2 2.3 range 1, v core =1.8 v, vos[1:0]=01 8 mhz 1.25 1.4 16 mhz 2.45 2.8 32 mhz 5.1 5.4 msi clock range 3, v core =1.2 v, vos[1:0]=11 65 khz 34.5 75 a 524 khz 83 120 4.2 mhz 485 540 hsi16 clock source (16 mhz) range 2, v core =1.5 v, vos[1:0]=10 16 mhz 2.1 2.3 ma range 1, v core =1.8 v, vos[1:0]=01 32 mhz 5.1 5.6 1. guaranteed by char acterization results at 125 c , unless otherwise specified. 2. oscillator bypassed (hsebyp = 1 in rcc_cr register). table 31. current consumption in run mode vs code type, code with data processing running from ram (1) symbol parameter conditions f hclk typ unit i dd (run from ram) supply current in run mode, code executed from ram, flash switched off f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v, vos[1:0]=11 dhrystone 4 mhz 450 a coremark 575 fibonacci 370 while(1) 340 range 1, v core =1.8 v, vos[1:0]=01 dhrystone 32 mhz 5.1 ma coremark 6.25 fibonacci 4.4 while(1) 4.7 1. guaranteed by characterization re sults, unless otherwise specified. 2. oscillator bypassed (hsebyp = 1 in rcc_cr register).
docid025844 rev 7 63/132 stm32l053x6 stm32l053x8 electrical characteristics 112 table 32. current consumption in sleep mode symbol parameter conditions f hclk typ max (1) unit i dd (sleep) supply current in sleep mode, flash off f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v, vos[1:0]=11 1 mhz 43.5 90 a 2 mhz 72 120 4 mhz 130 180 range 2, v core =1.5 v, vos[1:0]=10 4 mhz 160 210 8 mhz 305 370 16 mhz 590 710 range 1, v core =1.8 v, vos[1:0]=01 8 mhz 370 430 16 mhz 715 860 32 mhz 1650 1900 msi clock range 3, v core =1.2 v, vos[1:0]=11 65 khz 18 65 524 khz 31.5 75 4.2 mhz 140 210 hsi16 clock source (16 mhz) range 2, v core =1.5 v, vos[1:0]=10 16 mhz 665 830 range 1, v core =1.8 v, vos[1:0]=01 32 mhz 1750 2100 supply current in sleep mode, flash on f hse = f hclk up to 16 mhz included, f hse = f hclk /2 above 16 mhz (pll on) (2) range 3, v core =1.2 v, vos[1:0]=11 1 mhz 57.5 130 2 mhz 84 170 4 mhz 150 280 range 2, core =1.5 v, vos[1:0]=10 4 mhz 170 310 8 mhz 315 420 16 mhz 605 770 range 1, v core =1.8 v, vos[1:0]=01 8 mhz 380 460 16 mhz 730 950 32 mhz 1650 2400 msi clock range 3, v core =1.2 v, vos[1:0]=11 65 khz 29.5 110 524 khz 44.5 130 4.2 mhz 150 270 hsi16 clock source (16 mhz) range 2, v core =1.5 v, vos[1:0]=10 16 mhz 680 950 range 1, v core =1.8 v, vos[1:0]=01 32 mhz 1750 2100 1. guaranteed by characterization results at 125 c, unless otherwise specified.
electrical characteristics stm32l053x6 stm32l053x8 64/132 docid025844 rev 7 2. oscillator bypassed (hsebyp = 1 in rcc_cr register). table 33. current consumption in low-power run mode symbol parameter conditions typ max (1) unit i dd (lp run) supply current in low-power run mode all peripherals off, code executed from ram, flash switched off, v dd from 1.65 to 3.6 v msi clock = 65 khz, f hclk = 32 khz t a = ? 40 to 25c 8.5 10 a t a = 85 c 11.5 48 t a = 105 c 15.5 53 t a = 125 c 27.5 130 msi clock= 65 khz, f hclk = 65 khz t a =-40 c to 25 c 10 15 t a = 85 c 15.5 50 t a = 105 c 19.5 54 t a = 125 c 31.5 130 msi clock= 131 khz, f hclk = 131 khz t a = ? 40 to 25c 20 25 t a = 55 c 23 50 t a = 85 c 25.5 55 t a = 105 c 29.5 64 t a = 125 c 40 140 all peripherals off, code executed from flash, v dd from 1.65 v to 3.6 v msi clock= 65 khz, f hclk = 32 khz t a = ? 40 to 25c 22 28 t a = 85 c 26 68 t a = 105 c 31 75 t a = 125 c 44 95 msi clock = 65 khz, f hclk = 65 khz t a = ? 40 to 25c 27.5 33 t a = 85 c 31.5 73 t a = 105 c 36.5 80 t a = 125 c 49 100 msi clock = 131 khz, f hclk = 131 khz t a = ? 40 to 25c 39 46 t a = 55 c 41 80 t a = 85 c 44 86 t a = 105 c 49.5 100 t a = 125 c 60 120 1. guaranteed by characterization results at 125 c, unless otherwise specified.
docid025844 rev 7 65/132 stm32l053x6 stm32l053x8 electrical characteristics 112 figure 14. i dd vs v dd , at t a = 25/55/ 85/105/125 c, low-power run mode, code running from ram, range 3, msi (range 0) at 64 khz, 0 ws 06y9 :6?& :6?& :6?& :6?& :6?& 9'' 9  ,'' p$   ( ( ( ( ( ( (           table 34. current consumption in low-power sleep mode symbol parameter conditions typ max (1) unit i dd (lp sleep) supply current in low-power sleep mode all peripherals off, v dd from 1.65 to 3.6 v msi clock = 65 khz, f hclk = 32 khz, flash off t a = ? 40 to 25c 4.7 (2) - a msi clock = 65 khz, f hclk = 32 khz, flash on t a = ? 40 to 25c 17 23 t a = 85 c 19.5 63 t a = 105 c 23 69 t a = 125 c 32.5 90 msi clock =65 khz, f hclk = 65 khz, flash on t a = ? 40 to 25c 17 23 t a = 85 c 20 63 t a = 105 c 23.5 69 t a = 125 c 32.5 90 msi clock = 131 khz, f hclk = 131 khz, flash on t a = ? 40 to 25c 19.5 36 t a = 55 c 20.5 64 t a = 85 c 22.5 66 t a = 105 c 26 72 t a = 125 c 35 95 1. guaranteed by characterization results at 125 c, unless otherwise specified. 2. as the cpu is in sleep mode, the difference between the curr ent consumption with flash on and off (nearly 12 a) is the same whatever the clock frequency.
electrical characteristics stm32l053x6 stm32l053x8 66/132 docid025844 rev 7 figure 15. i dd vs v dd , at t a = 25/55/ 85/105/125 c, stop mode with rtc enabled and running on lse low drive figure 16. i dd vs v dd , at t a = 25/55/85/105/125 c, stop mode with rtc disabled, all clocks off table 35. typical and maximum current consumptions in stop mode symbol parameter conditions typ max (1) 1. guaranteed by characterization results at 125 c, unless otherwise specified. unit i dd (stop) supply current in stop mode t a = ? 40 to 25c 0.41 1 a t a = 55c 0.63 2.1 t a = 85c 1.7 4.5 t a = 105c 4 9.6 t a = 125c 11 24 (2) 2. guaranteed by test in production. 06y9 ,'' p$ 9'' 9 ?& ?& ?& ?& ?&  ( ( ( ( ( (           06y9 ,'' p$  ( ( ( ( ( ( (           9'' 9 ?& ?& ?& ?& ?&
docid025844 rev 7 67/132 stm32l053x6 stm32l053x8 electrical characteristics 112 table 36. typical and maximum current consumptions in standby mode symbol parameter conditions typ max (1) unit i dd (standby) supply current in standby mode independent watchdog and lsi enabled t a = ? 40 to 25c 1.3 1.7 a t a = 55 c - 2.9 t a = 85 c - 3.3 t a = 105 c - 4.1 t a = 125 c - 8.5 independent watchdog and lsi off t a = ? 40 to 25c 0.29 0.6 t a = 55 c 0.32 0.9 t a = 85 c 0.5 2.3 t a = 105 c 0.94 3 t a = 125 c 2.6 7 1. guaranteed by characterization results at 125 c, unless otherwise specified table 37. average current consumption during wakeup symbol parameter system frequency current consumption during wakeup unit i dd (wakeup from stop) supply current during wakeup from stop mode hsi 1 ma hsi/4 0,7 msi clock = 4,2 mhz 0,7 msi clock = 1,05 mhz 0,4 msi clock = 65 khz 0,1 i dd (reset) reset pin pulled down - 0,21 i dd (power-up) bor on - 0,23 i dd (wakeup from standby) with fast wakeup set msi clock = 2,1 mhz 0,5 with fast wakeup disabled msi clock = 2,1 mhz 0,12
electrical characteristics stm32l053x6 stm32l053x8 68/132 docid025844 rev 7 on-chip peripheral current consumption the current consumption of the on-chip peripherals is given in the following tables. the mcu is placed under the following conditions: ? all i/o pins are in input mode with a static value at v dd or v ss (no load) ? all peripherals are disabled unless otherwise mentioned ? the given value is calculated by measuring the current consumption ? with all peripherals clocked off ? with only one peripheral clocked on table 38. peripheral current consumption in run or sleep mode (1) peripheral typical consumption, v dd = 3.0 v, t a = 25 c unit range 1, v core =1.8 v vos[1:0] = 01 range 2, v core =1.5 v vos[1:0] = 10 range 3, v core =1.2 v vos[1:0] = 11 low-power sleep and run apb1 crs 2.5 2 2 2 a/mhz (f hclk ) dac1 4 3.5 3 2.5 i2c1 11 9.5 7.5 9 i2c2 4 3.5 3 2.5 lcd1 4 3.5 3 2.5 lptim1 10 8.5 6.5 8 lpuart1 8 6.5 5.5 6 spi2 9 4.5 3.5 4 usb 8.5 4.5 4 4.5 usart2 14.5 12 9.5 11 tim2 10.5 8.5 7 9 tim6 3.5 3 2.5 2 wwdg 3 2 2 2 apb2 adc1 (2) 5.5 5 3.5 4 a/mhz (f hclk ) spi1 4 3 3 2.5 usart1 14.5 11.5 9.5 12 tim21 7.5 6 5 5.5 tim22 7 6 5 6 firewall 1.5 1 1 0.5 dbgmcu 1.5 1 1 0.5 syscfg 2.5 2 2 1.5
docid025844 rev 7 69/132 stm32l053x6 stm32l053x8 electrical characteristics 112 cortex- m0+ core i/o port gpioa 3.5 3 2.5 2.5 a/mhz (f hclk ) gpiob 3.5 2.5 2 2.5 gpioc 8.5 6.5 5.5 7 gpiod 1 0.5 0.5 0.5 gpioh 1.5 1 1 0.5 ahb crc 1.5 1 1 1 a/mhz (f hclk ) flash 0 (3) 0 (3) 0 (3) 0 (3) dma1 10 8 6.5 8.5 rng 5.5 1 0.5 0.5 tsc 3 2.5 2 3 all enabled 283 225 222.5 212.5 a/mhz (f hclk ) pwr 2.5 2 2 1 a/mhz (f hclk ) 1. data based on differential i dd measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f hclk = 32 mhz (range 1), f hclk = 16 mhz (range 2), f hclk = 4 mhz (range 3), f hclk = 64khz (low-power run/sleep), f apb1 = f hclk , f apb2 = f hclk , default prescaler value for each peripheral. the cpu is in sleep mode in both cases. no i/o pins toggling. not tested in production. 2. hsi oscillator is off for this measure. 3. current consumption is negligible and close to 0 a. table 38. peripheral current consumption in run or sleep mode (1) (continued) peripheral typical consumption, v dd = 3.0 v, t a = 25 c unit range 1, v core =1.8 v vos[1:0] = 01 range 2, v core =1.5 v vos[1:0] = 10 range 3, v core =1.2 v vos[1:0] = 11 low-power sleep and run
electrical characteristics stm32l053x6 stm32l053x8 70/132 docid025844 rev 7 6.3.5 wakeup time from low-power mode the wakeup times given in the following table are measured with the msi or hsi16 rc oscillator. the clock source us ed to wake up the device d epends on the cu rrent op erating mode: ? sleep mode: the clock source is the clock that was set before entering sleep mode ? stop mode: the clock source is either the ms i oscillator in the range configured before entering stop mode, the hsi16 or hsi16/4. ? standby mode: the clock source is the msi oscillator running at 2.1 mhz all timings are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 24 . table 39. peripheral current consumption in stop and standby mode (1) symbol peripheral typical consumption, t a = 25 c unit v dd =1.8 v v dd =3.0 v i dd(pvd / bor) -0.71.2 a i refint --1.4 - lse low drive (2) 0,1 0,1 - lptim1, input 100 hz 0,01 0,01 - lptim1, input 1 mhz 6 6 - lpuart1 0,2 0,2 -rtc0,30,48 - lcd1 (static duty) 0,15 0,15 a - lcd1 (1/8 duty) 1,6 2,6 1. lptim peripheral cannot operate in standby mode. 2. lse low drive consumption is the difference between an external clock on osc32_in and a quartz between osc32_in and osc32_out.-
docid025844 rev 7 71/132 stm32l053x6 stm32l053x8 electrical characteristics 112 table 40. low-power mode wakeup timings symbol parameter conditions typ max unit t wusleep wakeup from sleep mode f hclk = 32 mhz 7 8 number of clock cycles t wusleep_lp wakeup from low-power sleep mode, f hclk = 262 khz f hclk = 262 khz flash memory enabled 78 f hclk = 262 khz flash memory switched off 910 t wustop wakeup from stop mode, regulator in run mode f hclk = f msi = 4.2 mhz 5.0 8 s f hclk = f hsi = 16 mhz 4.9 7 f hclk = f hsi /4 = 4 mhz 8.0 11 wakeup from stop mode, regulator in low- power mode f hclk = f msi = 4.2 mhz voltage range 1 5.0 8 f hclk = f msi = 4.2 mhz voltage range 2 5.0 8 f hclk = f msi = 4.2 mhz voltage range 3 5.0 8 f hclk = f msi = 2.1 mhz 7.3 13 f hclk = f msi = 1.05 mhz 13 23 f hclk = f msi = 524 khz 28 38 f hclk = f msi = 262 khz 51 65 f hclk = f msi = 131 khz 100 120 f hclk = msi = 65 khz 190 260 f hclk = f hsi = 16 mhz 4.9 7 f hclk = f hsi /4 = 4 mhz 8.0 11 wakeup from stop mode, regulator in low- power mode, code running from ram f hclk = f hsi = 16 mhz 4.9 7 f hclk = f hsi /4 = 4 mhz 7.9 10 f hclk = f msi = 4.2 mhz 4.7 8 t wustdby wakeup from standby mode, fwu bit = 1 f hclk = msi = 2.1 mhz 65 130 s wakeup from standby mode, fwu bit = 0 f hclk = msi = 2.1 mhz 2.2 3 ms
electrical characteristics stm32l053x6 stm32l053x8 72/132 docid025844 rev 7 6.3.6 external clock source characteristics high-speed external user clock generated from an external source in bypass mode the hse oscillator is switched off and the input pin is a standard gpio.the external clock signal has to re spect the i/o characteristics in section 6.3.12 . however, the recommended clock input waveform is shown in figure 17 . figure 17. high-speed external clock source ac timing diagram table 41. high-speed external user clock characteristics (1) 1. guaranteed by design. symbol parameter conditions min typ max unit f hse_ext user external clock source frequency css is on or pll is used 1832mhz css is off, pll not used 0832mhz v hseh osc_in input pin high level voltage - 0.7v dd -v dd v v hsel osc_in input pin low level voltage v ss -0.3v dd t w(hse) t w(hse) osc_in high or low time 12 - - ns t r(hse) t f(hse) osc_in rise or fall time - - 20 c in(hse) osc_in input capacitance - 2.6 - pf ducy (hse) duty cycle 45 - 55 % i l osc_in input leakage current v ss v in v dd --1a dlf 26 & b , 1 (;7(5 1$/ 670/[[ &/2&. 6285& ( 9 +6(+ w i +6( w : +6( , /   7 +6( w w u +6( w : +6( i +6(bh[w 9 +6(/
docid025844 rev 7 73/132 stm32l053x6 stm32l053x8 electrical characteristics 112 low-speed external user clock generated from an external source the characteristics given in the following table result from tests performed using a low- speed external clock source, and under ambien t temperature and supply voltage conditions summarized in table 24 . figure 18. low-speed external clock source ac timing diagram table 42. low-speed external user clock characteristics (1) 1. guaranteed by design, not tested in production symbol parameter conditions min typ max unit f lse_ext user external clock source frequency - 1 32.768 1000 khz v lseh osc32_in input pin high level voltage 0.7v dd -v dd v v lsel osc32_in input pin low level voltage v ss -0.3v dd t w(lse) t w(lse) osc32_in high or low time 465 - - ns t r(lse) t f(lse) osc32_in rise or fall time - - 10 c in(lse) osc32_in input capacitance - - 0.6 - pf ducy (lse) duty cycle - 45 - 55 % i l osc32_in input leakage current v ss v in v dd --1a dlf 26 &   b , 1 (;7(5 1$/ 670/[[ &/2&. 6285& ( 9 /6(+ w i /6( w : /6( , /   7 /6( w w u /6( w : /6( i /6(bh[w 9 /6(/
electrical characteristics stm32l053x6 stm32l053x8 74/132 docid025844 rev 7 high-speed external clock generated from a crystal/ceramic resonator the high-speed external (hse) clock can be supplied with a 1 to 25 mhz crystal/ceramic resonator oscillator. all th e information given in this paragraph are based on characterization results obtained with typical external components specified in table 43 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion an d startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequenc y, package, accuracy). for c l1 and c l2 , it is recommended to use high-quality external ceramic capacitors in the 5 pf to 25 pf range (typ.), designed for high- frequency applications, and selected to match the requirements of the crystal or resonator (see figure 19 ). c l1 and c l2 are usually the same size. the crystal manufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . pcb and mcu pin capacitance must be included (10 pf can be used as a rough estimate of the comb ined pin and board capacitance) when sizing c l1 and c l2 . refer to the application note an28 67 ?oscillator design guide for st microcontrollers? availabl e from the st website www.st.com . figure 19. hse oscilla tor circuit diagram table 43. hse oscillator characteristics (1) 1. guaranteed by design. symbol parameter conditions min typ max unit f osc_in oscillator frequency - 1 25 mhz r f feedback resistor - - 200 - k g m maximum critical crystal transconductance startup - - 700 a /v t su(hse) (2) 2. guaranteed by characterization results. t su(hse) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 mhz oscillat ion is reached. this value is measured for a standard crystal resonator and it can vary signif icantly with the crystal manufacturer. startup time v dd is stabilized - 2 - ms 26&b287 26&b,1 i +6( wrfruh & / & / 5 ) 670 5hvrqdwru &rqvxpswlrq frqwuro j p 5 p & p / p & 2 5hvrqdwru dle
docid025844 rev 7 75/132 stm32l053x6 stm32l053x8 electrical characteristics 112 low-speed external clock generated from a crystal/ceramic resonator the low-speed external (lse) clock can be supplied with a 32.768 khz crystal/ceramic resonator oscillator. all th e information given in this paragraph are based on characterization results obtained with typical external components specified in table 44 . in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion an d startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequenc y, package, accuracy). note: for information on selecting the crystal, refer to the application note an2867 ?oscillator design guide for st microcontrollers? available from the st website www.st.com . figure 20. typical applicati on with a 32.768 khz crystal note: an external resistor is not required between osc32_in and osc32_out and it is forbidden to add one. table 44. lse oscillator characteristics (1) symbol parameter conditions (2) min (2) typ max unit f lse lse oscillator frequency - 32.768 - khz g m maximum critical crystal transconductance lsedrv[1:0]=00 lower driving capability --0.5 a/v lsedrv[1:0]= 01 medium low driving capability - - 0.75 lsedrv[1:0] = 10 medium high driving capability --1.7 lsedrv[1:0]=11 higher driving capability --2.7 t su(lse) (3) startup time v dd is stabilized - 2 - s 1. guaranteed by design. 2. refer to the note and caution paragraphs below the table, and to the application note an2867 ?oscillator design guide for st microcontrollers?. 3. guaranteed by characterization results. t su(lse) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 khz oscillation is reached. this val ue is measured for a standard crystal resonator and it can vary significantly with the crystal manufacture r. to increase speed, address a lower-dri ve quartz with a high- driver mode. 069 26&b,1 26&b287 'ulyh surjudppdeoh dpsolilhu i /6( n+] uhvrqdwru 5hvrqdwruzlwklqwhjudwhg fdsdflwruv & / & /
electrical characteristics stm32l053x6 stm32l053x8 76/132 docid025844 rev 7 6.3.7 internal clock source characteristics the parameters given in table 45 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 24 . high-speed internal 16 mhz (hsi16) rc oscillator figure 21. hsi16 minimum and maxi mum value versus temperature table 45. 16 mhz hsi16 oscillator characteristics symbol parameter conditions min typ max unit f hsi16 frequency v dd = 3.0 v - 16 - mhz trim (1)(2) 1. the trimming step differs depending on the trimming code. it is usually negativ e on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xe0). hsi16 user- trimmed resolution trimming code is not a multiple of 16 - 0.4 0.7 % trimming code is a multiple of 16 - - 1.5 % acc hsi16 (2) 2. guaranteed by characterization results. accuracy of the factory-calibrated hsi16 oscillator v dda = 3.0 v, t a = 25 c -1 (3) 3. guaranteed by test in production. -1 (3) % v dda = 3.0 v, t a = 0 to 55 c -1.5 - 1.5 % v dda = 3.0 v, t a = -10 to 70 c -2 - 2 % v dda = 3.0 v, t a = -10 to 85 c -2.5 - 2 % v dda = 3.0 v, t a = -10 to 105 c -4 - 2 % v dda = 1.65 v to 3.6 v t a = ? 40 to 125 c -5.45 - 3.25 % t su(hsi16) (2) hsi16 oscillator startup time - - 3.7 6 s i dd(hsi16) (2) hsi16 oscillator power consumption - - 100 140 a 06y9                       9plq 9w\s 9pd[ 9pd[ 9plq
docid025844 rev 7 77/132 stm32l053x6 stm32l053x8 electrical characteristics 112 high-speed internal 48 mhz (hsi48) rc oscillator low-speed internal (lsi) rc oscillator multi-speed internal (msi) rc oscillator table 46. hsi48 oscillator characteristics (1) 1. v dda = 3.3 v, t a = ?40 to 125 c unless otherwise specified. symbol parameter conditions min typ max unit f hsi48 frequency - 48 - mhz trim hsi48 user-trimming step 0.09 (2) 0.14 0.2 (2) % ducy (hsi48) duty cycle 45 (2) 2. guaranteed by design. -55 (2) % acc hsi48 accuracy of the hsi48 oscillator (factory calibrated before crs calibration) t a = 25 c -4 (3) 3. guaranteed by characterization results. -4 (3) % t su(hsi48) hsi48 oscillator startup time - - 6 (2) s i dda(hsi48) hsi48 oscillator power consumption - 330 380 (2) a table 47. lsi oscillator characteristics symbol parameter min typ max unit f lsi (1) 1. guaranteed by test in production. lsi frequency 26 38 56 khz d lsi (2) 2. this is a deviation for an individual part, once the init ial frequency has been measured. lsi oscillator frequency drift 0c t a 85c -10 - 4 % t su(lsi) (3) 3. guaranteed by design. lsi oscillator startup time - - 200 s i dd(lsi) (3) lsi oscillator power consumption - 400 510 na table 48. msi oscillator characteristics symbol parameter condition typ max unit f msi frequency after factory calibration, done at v dd = 3.3 v and t a = 25 c msi range 0 65.5 - khz msi range 1 131 - msi range 2 262 - msi range 3 524 - msi range 4 1.05 - mhz msi range 5 2.1 - msi range 6 4.2 -
electrical characteristics stm32l053x6 stm32l053x8 78/132 docid025844 rev 7 acc msi frequency error after factory calibration - 0.5 - % d temp(msi) (1) msi oscillator frequency drift 0 c t a 85 c - 3- % msi oscillator frequency drift v dd = 3.3 v, ? 40 c t a 110 c msi range 0 ? 8.9 +7.0 msi range 1 ? 7.1 +5.0 msi range 2 ? 6.4 +4.0 msi range 3 ? 6.2 +3.0 msi range 4 ? 5.2 +3.0 msi range 5 ? 4.8 +2.0 msi range 6 ? 4.7 +2.0 d volt(msi) (1) msi oscillator frequency drift 1.65 v v dd 3.6 v, t a = 25 c --2.5%/v i dd(msi) (2) msi oscillator power consumption msi range 0 0.75 - a msi range 1 1 - msi range 2 1.5 - msi range 3 2.5 - msi range 4 4.5 - msi range 5 8 - msi range 6 15 - t su(msi) msi oscillator startup time msi range 0 30 - s msi range 1 20 - msi range 2 15 - msi range 3 10 - msi range 4 6 - msi range 5 5 - msi range 6, voltage range 1 and 2 3.5 - msi range 6, voltage range 3 5- table 48. msi oscillator characteristics (continued) symbol parameter condition typ max unit
docid025844 rev 7 79/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.3.8 pll characteristics the parameters given in table 49 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 24 . t stab(msi) (2) msi oscillator stabilization time msi range 0 - 40 s msi range 1 - 20 msi range 2 - 10 msi range 3 - 4 msi range 4 - 2.5 msi range 5 - 2 msi range 6, voltage range 1 and 2 -2 msi range 3, voltage range 3 -3 f over(msi) msi oscillator frequency overshoot any range to range 5 -4 mhz any range to range 6 -6 1. this is a deviation for an individual part, once the init ial frequency has been measured. 2. guaranteed by characterization results. table 48. msi oscillator characteristics (continued) symbol parameter condition typ max unit table 49. pll characteristics symbol parameter value unit min typ max (1) 1. guaranteed by characterization results. f pll_in pll input clock (2) 2. take care of using the appropriate multiplier factors so as to have pll input clock values compatible with the range defined by f pll_out . 2- 24mhz pll input clock duty cycle 45 - 55 % f pll_out pll output clock 2 - 32 mhz t lock pll input = 16 mhz pll vco = 96 mhz - 115 160 s jitter cycle-to-cycle jitter - 600 ps i dda (pll) current consumption on v dda - 220 450 a i dd (pll) current consumption on v dd - 120 150
electrical characteristics stm32l053x6 stm32l053x8 80/132 docid025844 rev 7 6.3.9 memory characteristics ram memory flash memory and data eeprom table 50. ram and hardware registers symbol parameter cond itions min typ max unit vrm data retention mode (1) 1. minimum supply voltage without losing data stored in ram (in stop mode or under reset) or in hardware registers (only in stop mode). stop mode (or reset) 1.65 - - v table 51. flash memo ry and data eeprom characteristics symbol parameter conditions min typ max (1) 1. guaranteed by design. unit v dd operating voltage read / write / erase -1.65-3.6v t prog programming time for word or half-page erasing - 3.28 3.94 ms programming - 3.28 3.94 i dd average current during the whole programming / erase operation t a = 25 c, v dd = 3.6 v - 500 700 a maximum current (peak) during the whole programming / erase operation -1.52.5ma table 52. flash memory and data eeprom endurance and retention symbol parameter conditions value unit min (1) n cyc (2) cycling (erase / write) program memory t a = -40c to 105 c 10 kcycles cycling (erase / write) eeprom data memory 100 cycling (erase / write) program memory t a = -40c to 125 c 0.2 cycling (erase / write) eeprom data memory 2
docid025844 rev 7 81/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.3.10 emc characteristics susceptibility tests are perf ormed on a sample basis duri ng device characterization. functional ems (electromagnetic susceptibility) while a simple application is executed on t he device (toggling 2 leds through i/o ports). the device is stressed by two electromagnetic events until a failure o ccurs. the failure is indicated by the leds: ? electrostatic discharge (esd) (positive and negative) is applied to all device pins until a functional disturbance occurs. this test is compliant with the iec 61000-4-2 standard. ? ftb : a burst of fast transient voltage (positive and negative) is applied to v dd and v ss through a 100 pf capacitor, until a func tional disturbance occurs. this test is compliant with the iec 61000-4-4 standard. a device reset allows normal operations to be resumed. the test results are given in table 53 . they are based on the ems levels and classes defined in application note an1709. t ret (2) data retention (program memory) after 10 kcycles at t a = 85 c t ret = +85 c 30 years data retention (eeprom data memory) after 100 kcycles at t a = 85 c 30 data retention (program memory) after 10 kcycles at t a = 105 c t ret = +105 c 10 data retention (eeprom data memory) after 100 kcycles at t a = 105 c data retention (program memory) after 200 cycles at t a = 125 c t ret = +125 c data retention (eeprom data memory) after 2 kcycles at t a = 125 c 1. guaranteed by characterization results. 2. characterization is done according to jedec jesd22-a117. table 52. flash memory and data eeprom endurance and rete ntion (continued) symbol parameter conditions value unit min (1) table 53. ems characteristics symbol parameter conditions level/ class v fesd voltage limits to be applied on any i/o pin to induce a functional disturbance v dd = 3.3 v, lqfp64, t a = +25 c, f hclk = 32 mhz conforms to iec 61000-4-2 3b v eftb fast transient voltage burst limits to be applied through 100 pf on v dd and v ss pins to induce a functional disturbance v dd = 3.3 v, lqfp64, t a = +25 c, f hclk = 32 mhz conforms to iec 61000-4-4 4a
electrical characteristics stm32l053x6 stm32l053x8 82/132 docid025844 rev 7 designing hardened software to avoid noise problems emc characterization and optimization are per formed at component level with a typical application environment and simplified mcu soft ware. it should be noted that good emc performance is highly dependent on the user application and the software in particular. therefore it is recommended that the user applies emc software optimization and prequalification tests in re lation with the emc level requested for his application. software recommendations the software flowchart must include the m anagement of runaway conditions such as: ? corrupted program counter ? unexpected reset ? critical data corruption (control registers...) prequalification trials most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forci ng a low state on the nrst pin or the oscillator pins for 1 second. to complete these trials, esd stress can be applie d directly on the device, over the range of specification values. when unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note an1015). electromagnetic interference (emi) the electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 leds through the i/o por ts). this emission test is compliant with iec 61967-2 standard which specifies the test board and the pin loading. table 54. emi characteristics symbol parameter conditions monitored frequency band max vs. f osc /f cpu unit 8 mhz/ 4 mhz 8 mhz/ 16 mhz 8 mhz/ 32 mhz s emi peak level v dd = 3.6 v, t a = 25 c, compliant with iec 61967-2 0.1 to 30 mhz -21 -15 -12 dbv 30 to 130 mhz -14 -12 -1 130 mhz to 1ghz -10 -11 -7 emi level 1 1 1 -
docid025844 rev 7 83/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.3.11 electrical sens itivity characteristics based on three different tests (esd, lu) using specific measurement methods, the device is stressed in order to determ ine its performance in terms of electrical sensitivity. electrostatic discharge (esd) electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combinati on. the sample size depends on the number of supply pins in the device (3 parts (n+1) supply pins). this test conforms to the ansi/jedec standard. static latch-up two complementary static te sts are required on six pa rts to assess the latch-up performance: ? a supply overvoltage is applied to each power supply pin ? a current injection is applied to each input, output and configurable i/o pin these tests are compliant with eia/jesd 78a ic latch-up standard. table 55. esd absolute maximum ratings symbol ratings conditions class maximum value (1) 1. guaranteed by characterization results. unit v esd(hbm) electrostatic discharge voltage (human body model) t a = +25 c, conforming to ansi/jedec js-001 22000 v v esd(cdm) electrostatic discharge voltage (charge device model) t a = +25 c, conforming to ansi/esd stm5.3.1. c4 500 table 56. electrical sensitivities symbol parameter conditions class lu static latch-up class t a = +125 c conforming to jesd78a ii level a
electrical characteristics stm32l053x6 stm32l053x8 84/132 docid025844 rev 7 6.3.12 i/o current in jection characteristics as a general rule, current injection to the i/o pins, due to external voltage below v ss or above v dd (for standard pins) should be avoided during normal product operation. however, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection acci dentally happens, susceptibility tests are performed on a sample basis during device characterization. functional susceptibility to i/o current injection while a simple application is executed on the device, the device is stressed by injecting current into the i/o pins programmed in floating input mode . while current is injected into the i/o pin, one at a time, the device is checked for functional failures. the failure is indicated by an out of range parameter: adc error above a certain limit (higher than 5 lsb tue), out of conventional limits of induced leakage current on adjacent pins (out of ?5 a/+0 a range), or ot her functional failure (for ex ample reset occurrence oscillator frequency deviation, lcd levels). the test results are given in the table 57 . table 57. i/o current in jection susceptibility symbol description functional susceptibility unit negative injection positive injection i inj injected current on boot0 -0 na ma injected current on pa0, pa4, pa5, pa11, pa12, pc15, ph0 and ph1 -5 0 injected current on any other ft, ftf pins -5 (1) 1. it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative currents. na injected current on any other pins -5 (1) +5
docid025844 rev 7 85/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.3.13 i/o port characteristics general input/output characteristics unless otherwise specified, the parameters given in table 58 are derived from tests performed under the conditions summarized in table 24 . all i/os are cmos and ttl compliant. table 58. i/o static characteristics symbol parameter c onditions min typ max unit v il input low level voltage tc, ft, ftf, rst i/os - - 0.3v dd v boot0 pin - - 0.14v dd (1) v ih input high level voltage all i/os 0.7 v dd -- v hys i/o schmitt trigger voltage hysteresis (2) standard i/os - 10% v dd (3) - boot0 pin - 0.01 - i lkg input leakage current (4) v ss v in v dd all i/os except for pa11, pa12, boot0 and ftf i/os --50 na v ss v in v dd , pa11 and pa12 i/os - - -50/+250 v ss v in v dd ftf i/os - - 100 v dd v in 5 v all i/os except for pa11, pa12, boot0 and ftf i/os - - 200 na v dd v in 5 v ftf i/os - - 500 v dd v in 5 v pa11, pa12 and boot0 --10a r pu weak pull-up equivalent resistor (5) v in = v ss 30 45 60 k r pd weak pull-down equivalent resistor (5) v in = v dd 30 45 60 k c io i/o pin capacitance - - 5 - pf 1. g uaranteed by characterization. 2. hysteresis voltage between schmi tt trigger switching levels. guar anteed by characterization results. 3. with a minimum of 200 mv. guaranteed by characterization results. 4. the max. value may be exceeded if negativ e current is injected on adjacent pins. 5. pull-up and pull-down resistors are designed with a true resi stance in series with a sw itchable pmos/nmos. this mos/nmos contribution to the series resistance is minimum (~10% order).
electrical characteristics stm32l053x6 stm32l053x8 86/132 docid025844 rev 7 figure 22. v ih /v il versus vdd (cmos i/os) figure 23. v ih /v il versus vdd (ttl i/os) output driving current the gpios (general purpose input/outputs) can si nk or source up to 8 ma, and sink or source up to 15 ma with the non-standard v ol /v oh specifications given in table 59 . in the user application, the number of i/o pi ns which can drive curr ent must be limited to respect the absolute maximum rating specified in section 6.2 : ? the sum of the currents sourced by all the i/os on v dd, plus the maximum run consumption of the mcu sourced on v dd, cannot exceed the absolute maximum rating i vdd( ) (see table 22 ). ? the sum of the currents sunk by all the i/os on v ss plus the maximum run consumption of the mcu sunk on v ss cannot exceed the absolute maximum rating i vss( ) (see table 22 ). 06y9 9 '' 9 9 ,+plq  9 ,/pd[  9 ,/ 9 ,+ 9    &026vwdqgduguhtxluhphqwv9 ,+plq 9 '' 9 ,/pd[ 9 ''     &026vwdqgduguhtxluhphqwv9 ,/pd[ 9 '' 9 ,+plq 9 ''  dooslqv h[fhsw%2273&3+ 9 ,+plq 9 '' iru %2273&3+ ,qsxwudqjhqrw jxdudqwhhg 06y9 9 '' 9 9 ,+plq  9 ,/pd[  9 ,/ 9 ,+ 9    77/vwdqgduguhtxluhphqwv9 ,+plq 9 9 ,/pd[ 9 ''     77/vwdqgduguhtxluhphqwv9 ,/pd[ 9 ,qsxwudqjhqrw jxdudqwhhg 9 ,+plq 9 ''  dooslqv h[fhsw%2273&3+ 9 ,+plq 9 '' iru %2273&3+
docid025844 rev 7 87/132 stm32l053x6 stm32l053x8 electrical characteristics 112 output voltage levels unless otherwise specified, the parameters given in table 59 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 24 . all i/os are cmos and ttl compliant. table 59. output voltage characteristics symbol parameter conditions min max unit v ol (1) 1. the i io current sunk by the device must always respect the absolute maximum rating specified in table 22 . the sum of the currents sunk by all the i/os (i/o ports and control pins) must always be respected and must not exceed i io(pin) . output low level voltage for an i/o pin cmos port (2) , i io = +8 ma 2.7 v v dd 3.6 v 2. ttl and cmos outputs are compatible with jedec standards jesd36 and jesd52. -0.4 v v oh (3) 3. the i io current sourced by the device must always re spect the absolute maximum rating specified in table 22 . the sum of the currents sourced by all the i/o s (i/o ports and control pins) must always be respected and must not exceed i io(pin) . output high level voltage for an i/o pin v dd -0.4 - v ol (1) output low level voltage for an i/o pin ttl port (2) , i io =+ 8 ma 2.7 v v dd 3.6 v -0.4 v oh (3)(4) 4. guaranteed by characterization results. output high level voltage for an i/o pin ttl port (2) , i io = -6 ma 2.7 v v dd 3.6 v 2.4 - v ol (1)(4) output low level voltage for an i/o pin i io = +15 ma 2.7 v v dd 3.6 v -1.3 v oh (3)(4) output high level voltage for an i/o pin i io = -15 ma 2.7 v v dd 3.6 v v dd -1.3 - v ol (1)(4) output low level voltage for an i/o pin i io = +4 ma 1.65 v v dd < 3.6 v -0.45 v oh (3)(4) output high level voltage for an i/o pin i io = -4 ma 1.65 v v dd 3.6 v v dd -0.45 - v olfm+ (1)(4) output low level voltage for an ftf i/o pin in fm+ mode i io = 20 ma 2.7 v v dd 3.6 v -0.4 i io = 10 ma 1.65 v v dd 3.6 v -0.4
electrical characteristics stm32l053x6 stm32l053x8 88/132 docid025844 rev 7 input/output ac characteristics the definition and values of input/output ac characteristics are given in figure 24 and table 60 , respectively. unless otherwise specified, the parameters given in table 60 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 24 . table 60. i/o ac characteristics (1) ospeedrx[1:0] bit value (1) symbol parameter conditions min max (2) unit 00 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 400 khz c l = 50 pf, v dd = 1.65 v to 2.7 v - 100 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 125 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 320 01 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 2 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 0.6 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 30 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 65 10 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 10 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 2 t f(io)out t r(io)out output rise and fall time c l = 50 pf, v dd = 2.7 v to 3.6 v - 13 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 28 11 f max(io)out maximum frequency (3) c l = 30 pf, v dd = 2.7 v to 3.6 v - 35 mhz c l = 50 pf, v dd = 1.65 v to 2.7 v - 10 t f(io)out t r(io)out output rise and fall time c l = 30 pf, v dd = 2.7 v to 3.6 v - 6 ns c l = 50 pf, v dd = 1.65 v to 2.7 v - 17 fm+ configuration (4) f max(io)out maximum frequency (3) c l = 50 pf, v dd = 2.5 v to 3.6 v -1mhz t f(io)out output fall time - 10 ns t r(io)out output rise time - 30 f max(io)out maximum frequency (3) c l = 50 pf, v dd = 1.65 v to 3.6 v -350khz t f(io)out output fall time - 15 ns t r(io)out output rise time - 60 -t extipw pulse width of external signals detected by the exti controller -8-ns 1. the i/o speed is configured using the ospee drx[1:0] bits. refer to the line reference manual for a description of gpio port configuration register. 2. guaranteed by design. 3. the maximum frequency is defined in figure 24 . 4. when fm+ configuration is set, the i/o speed control is bypassed. refer to the line reference manual for a detailed description of fm+ i/o configuration.
docid025844 rev 7 89/132 stm32l053x6 stm32l053x8 electrical characteristics 112 figure 24. i/o ac charac teristics definition 6.3.14 nrst pin characteristics the nrst pin input driver uses cmos technology. it is connected to a permanent pull-up resistor, r pu , except when it is internally driven low (see table 61 ). unless otherwise specified, the parameters given in table 61 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 24 . dlg    w u ,2 rxw 287387 (;7(51$/ 21&/ 0d[lpxpiuhtxhqf\lvdfklhyhgli w u w i ?  7dqgliwkhgxw\f\fohlv   zkhqordghge\& / vshflilhglqwkhwdeoh3 ,2$&fkdudfwhulvwlfv      7 w i ,2 rxw table 61. nrst pin characteristics symbol parameter conditions min typ max unit v il(nrst) (1) 1. guaranteed by design. nrst input low level voltage - v ss -0.8 v v ih(nrst) (1) nrst input high level voltage - 1.4 - v dd v ol(nrst) (1) nrst output low level voltage i ol = 2 ma 2.7 v < v dd < 3.6 v -- 0.4 i ol = 1.5 ma 1.65 v < v dd < 2.7 v -- v hys(nrst) (1) nrst schmitt trigger voltage hysteresis --10%v dd (2) 2. 200 mv minimum value -mv r pu weak pull-up equivalent resistor (3) 3. the pull-up is designed with a true resistance in series with a switchable pmos. this pmos contribution to the series resistance is around 10%. v in = v ss 30 45 60 k v f(nrst) (1) nrst input filtered pulse - - - 50 ns v nf(nrst) (1) nrst input not filtered pulse - 350 - - ns
electrical characteristics stm32l053x6 stm32l053x8 90/132 docid025844 rev 7 figure 25. recommended nrst pin protection 1. the reset network protects t he device against par asitic resets. 2. the external capacitor must be placed as close as possibl e to the device. 3. the user must ensure that the level on the nrst pin can go below the v il(nrst) max level specified in table 61 . otherwise the reset will not be taken into account by the device. 6.3.15 12-bit adc characteristics unless otherwise specified, the parameters given in table 62 are derived from tests performed under ambient temperature, f pclk frequency and v dda supply voltage conditions summarized in table 24: general operating conditions . note: it is recommended to perform a calibration after each power-up. dlf 670/[[ 5 38 1567  9 '' )lowhu ,qwhuqdouhvhw ?) ([whuqdouhvhwflufxlw  table 62. adc characteristics symbol parameter conditions min typ max unit v dda analog supply voltage for adc on fast channel 1.65 - 3.6 v standard channel 1.75 (1) -3.6 v ref+ positive reference voltage - 1.65 v dda v i dda (adc) current consumption of the adc on v dda and v ref+ 1.14 msps - 200 - a 10 ksps - 40 - current consumption of the adc on v dd (2) 1.14 msps - 70 - 10 ksps - 1 - f adc adc clock frequency voltage scaling range 1 0.14 - 16 mhz voltage scaling range 2 0.14 - 8 voltage scaling range 3 0.14 - 4 f s (3) sampling rate 12-bit resolution 0.01 - 1.14 mhz f trig (3) external trigger frequency f adc = 16 mhz, 12-bit resolution - - 941 khz ---171/f adc v ain conversion voltage range - 0 - v ref+ v r ain (3) external input impedance see equation 1 and table 63 for details --50k r adc (3)(4) sampling switch resistance - - - 1 k
docid025844 rev 7 91/132 stm32l053x6 stm32l053x8 electrical characteristics 112 c adc (3) internal sample and hold capacitor ---8pf t cal (3)(5) calibration time f adc = 16 mhz 5.2 s -831/f adc w latency (6) adc_dr register write latency adc clock = hsi16 1.5 adc cycles + 2 f pclk cycles - 1.5 adc cycles + 3 f pclk cycles - adc clock = pclk/2 - 4.5 - f pclk cycle adc clock = pclk/4 - 8.5 - f pclk cycle t latr (3) trigger conversion latency f adc = f pclk /2 = 16 mhz 0.266 s f adc = f pclk /2 8.5 1/f pclk f adc = f pclk /4 = 8 mhz 0.516 s f adc = f pclk /4 16.5 1/f pclk f adc = f hsi16 = 16 mhz 0.252 - 0.260 s jitter adc adc jitter on trigger conversion f adc = f hsi16 -1-1/f hsi16 t s (3) sampling time f adc = 16 mhz 0.093 - 10.03 s -1.5-160.51/f adc t up_ldo (3)(5) internal ldo power-up time - - - 10 s t stab (3)(5) adc stabilization time - 14 1/f adc t conv (3) total conversion time (including sampling time) f adc = 16 mhz, 12-bit resolution 0.875 - 10.81 s 12-bit resolution 14 to 173 (t s for sampling +12.5 for successive approximation) 1/f adc 1. v dda minimum value can be decreased in spec ific temperature conditions. refer to table 63: rain max for fadc = 16 mhz . 2. a current consumption proportional to the apb clock frequency has to be added (see table 38: peripheral current consumption in run or sleep mode ). 3. guaranteed by design. 4. standard channels have an extra protection resi stance which depends on supply voltage. refer to table 63: rain max for fadc = 16 mhz . 5. this parameter only includes the adc timing. it does not take into account register access latency. 6. this parameter specifies the latency to tr ansfer the conversion result into the adc_dr register. eoc bit is set to indicate t he conversion is complete and has the same latency. table 62. adc characteristics (continued) symbol parameter conditions min typ max unit
electrical characteristics stm32l053x6 stm32l053x8 92/132 docid025844 rev 7 equation 1: r ain max formula the simplified formula above ( equation 1 ) is used to determine the maximum external impedance allowed for an error below 1/4 of lsb. here n = 12 (from 12-bit resolution). r ain t s f adc c adc 2 n2 + () ln --------------------------------------------------------------- - r adc ? < table 63. r ain max for f adc = 16 mhz (1) t s (cycles) t s (s) r ain max for fast channels (k ) r ain max for standard channels (k ) v dd > 2.7 v v dd > 2.4 v v dd > 2.0 v v dd > 1.8 v v dd > 1.75 v v dd > 1.65 v and t a > ? 10 c v dd > 1.65 v and t a > 25 c 1.5 0.09 0.5 < 0.1 na na na na na na 3.5 0.22 1 0.2 < 0.1 na na na na na 7.5 0.47 2.5 1.7 1.5 < 0.1 na na na na 12.5 0.78 4 3.2 3 1 na na na na 19.5 1.22 6.5 5.7 5.5 3.5 na na na < 0.1 39.5 2.47 13 12.2 12 10 na na na 5 79.5 4.97 27 26.2 26 24 < 0.1 na na 19 160.5 10.03 50 49.2 49 47 32 < 0.1 < 0.1 42 1. guaranteed by design. table 64. adc accuracy (1)(2)(3) symbol parameter conditions min typ max unit et total unadjusted error 1.65 v < v dda = v ref+ < 3.6 v, range 1/2/3 -2 4 lsb eo offset error - 1 2.5 eg gain error - 1 2 el integral linearity error - 1.5 2.5 ed differential linearity error - 1 1.5 enob effective number of bits 10.2 11 bits effective number of bits (16-bit mode oversampling with ratio =256) (4) 11.3 12.1 - sinad signal-to-noise distortion 63 69 - db snr signal-to-noise ratio 63 69 - signal-to-noise ratio (16-bit mode oversampling with ratio =256) (4) 70 76 - thd total harmonic distortion - -85 -73
docid025844 rev 7 93/132 stm32l053x6 stm32l053x8 electrical characteristics 112 figure 26. adc accuracy characteristics et total unadjusted error 1.65 v < v ref+ < v dda < 3.6 v, range 1/2/3 -2 5 lsb eo offset error - 1 2.5 eg gain error - 1 2 el integral linearity error - 1.5 3 ed differential linearity error - 1 2 enob effective number of bits 10.0 11.0 - bits sinad signal-to-noise distortion 62 69 - db snr signal-to-noise ratio 61 69 - thd total harmonic distortion - -85 -65 1. adc dc accuracy values are measured after internal calibration. 2. adc accuracy vs. negative injection current: injecting negat ive current on any of the standard (non-robust) analog input pins should be avoided as this signific antly reduces the accuracy of the conversion being performed on another analog input. it is recommended to add a schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. any positive injection current with in the limits specified for i inj(pin) and i inj(pin) in section 6.3.12 does not affect the adc accuracy. 3. better performance may be achieved in restricted v dda , frequency and temperature ranges. 4. this number is obtained by the test boa rd without additional noise, resulting in non-optimized value for oversampling mode. table 64. adc accuracy (1)(2)(3) (continued) symbol parameter conditions min typ max unit ( 7  7rwdo8qdmxvwhg(uurupd[lpxpghyldwlrq ehwzhhqwkhdfwxdodqglghdowudqvihufxuyhv ( 2  2iivhw(uurupd[lpxpghyldwlrq ehwzhhqwkhiluvwdfwxdowudqvlwlrqdqgwkhiluvw lghdorqh ( *  *dlq(uurughyldwlrqehwzhhqwkhodvw lghdowudqvlwlrqdqgwkhodvwdfwxdorqh ( '  'liihuhqwldo/lqhdulw\(uurupd[lpxp ghyldwlrqehwzhhqdfwxdovwhsvdqgwkhlghdorqhv ( /  ,qwhjudo/lqhdulw\(uurupd[lpxpghyldwlrq ehwzhhqdq\dfwxdowudqvlwlrqdqgwkhhqgsrlqw fruuhodwlrqolqh  ([dpsohridqdfwxdowudqvihufxuyh  7khlghdowudqvihufxuyh  (qgsrlqwfruuhodwlrqolqh                   9 ''$ 9 66$ ( 2 ( 7 ( / ( * ( ' /6% ,'($/    069
electrical characteristics stm32l053x6 stm32l053x8 94/132 docid025844 rev 7 figure 27. typical connecti on diagram using the adc 1. refer to table 62: adc characteristics for the values of r ain , r adc and c adc . 2. c parasitic represents the capacitance of the pcb (dependent on soldering and pcb layout quality) plus the pad capacitance (roughly 7 pf). a high c parasitic value will downgrade conversion accuracy. to remedy this, f adc should be reduced. general pcb design guidelines power supply decoupling should be performed as shown in figure 28 or figure 29 , depending on whether v ref+ is connected to v dda or not. the 10 nf capacitors should be ceramic (good quality). they should be placed as close as possible to the chip. figure 28. power supply and reference decoupling (v ref+ not connected to v dda ) 06y9 9 ''$ $,1[ ,/?q$ 9 7 5 $,1  & sdudvlwlf 9 $,1 9 7 5 $'& elw frqyhuwhu & $'& 6dpsohdqgkrog$'& frqyhuwhu 069 9 5() 670/[[ 9 ''$ 9 66$ 9 5() ?)q) ?)q)
docid025844 rev 7 95/132 stm32l053x6 stm32l053x8 electrical characteristics 112 figure 29. power supply and reference decoupling (v ref+ connected to v dda ) 069 6 2%& 6 $$! 670/[[ ?&n& 6 2%&n 6 33!
electrical characteristics stm32l053x6 stm32l053x8 96/132 docid025844 rev 7 6.3.16 dac electri cal characteristics data guaranteed by design, not tested in production, unless otherwise specified. table 65. dac characteristics symbol parameter conditions min typ max unit v dda analog supply voltage - 1.8 - 3.6 v v ref+ reference supply voltage v ref+ must always be below v dda 1.8 - 3.6 v v ref- lower reference voltage - v ssa v i ddvref+ (1) current consumption on v ref+ supply v ref+ = 3.3 v no load, middle code (0x800) - 130 220 a no load, worst code (0x000) - 220 350 i dda (2) current consumption on v dda supply, v dda = 3.3 v no load, middle code (0x800) - 210 320 a no load, worst code (0xf1c) - 320 520 r l (3) resistive load dac output on r l connected to v ssa 5- - k r l connected to v dda 25 - - c l (3) capacitive load dac output buffer on - - 50 pf r o output impedance dac output buffer off 12 16 20 k v dac_out voltage on dac_out output dac output buffer on 0.2 - v dda ? 0.2 v dac output buffer off 0.5 - v ref+ ? 1lsb mv
docid025844 rev 7 97/132 stm32l053x6 stm32l053x8 electrical characteristics 112 dnl (2) differential non linearity (4) c l 50 pf, r l 5 k dac output buffer on -1.5 3 lsb no r load , c l 50 pf dac output buffer off -1.5 3 inl (2) integral non linearity (5) c l 50 pf, r l 5 k dac output buffer on -2 4 no r load , c l 50 pf dac output buffer off -2 4 offset (2) offset error at code 0x800 (6) c l 50 pf, r l 5 k dac output buffer on -10 25 no r load , c l 50 pf dac output buffer off -5 8 offset1 (2) offset error at code 0x001 (7) no r load , c l 50 pf dac output buffer off -1.5 5 doffset/dt (2) offset error temperature coefficient (code 0x800) v dda = 3.3v v ref+ = 3.0 v t a = 0 to 50 c dac output buffer off -20 -10 0 v/c v dda = 3.3v v ref+ = 3.0 v t a = 0 to 50 c dac output buffer on 020 50 gain (2) gain error (8) c l 50 pf, r l 5 k dac output buffer on - +0.1 / -0.2% +0.2 / -0.5% % no r load , c l 50 pf dac output buffer off - +0 / -0.2% +0 / -0.4% dgain/dt (2) gain error temperature coefficient v dda = 3.3v v ref+ = 3.0 v t a = 0 to 50 c dac output buffer off -10 -2 0 v/c v dda = 3.3v v ref+ = 3.0 v t a = 0 to 50 c dac output buffer on -40 -8 0 tue (2) total unadjusted error c l 50 pf, r l 5 k dac output buffer on -12 30 lsb no r load , c l 50 pf dac output buffer off -8 12 table 65. dac characteristics (continued) symbol parameter conditions min typ max unit
electrical characteristics stm32l053x6 stm32l053x8 98/132 docid025844 rev 7 figure 30. 12-bit buffered/non-buffered dac t settling settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till dac_out reaches final value 1lsb c l 50 pf, r l 5 k - 7 12 s update rate max frequency for a correct dac_out change (95% of final value) with 1 lsb variation in the input code c l 50 pf, r l 5 k - - 1 msps t wakeup wakeup time from off state (setting the enx bit in the dac control register) (9) c l 50 pf, r l 5 k - 9 15 s psrr+ v dda supply rejection ratio (static dc measurement) c l 50 pf, r l 5 k --60 -35db 1. guaranteed by characterization results. 2. guaranteed by design, not tested in production. 3. connected between dac_out and v ssa . 4. difference between two consecutive codes - 1 lsb. 5. difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 4095. 6. difference between the value measured at code (0x800) and the ideal value = v ref+ /2. 7. difference between the value measured at code (0x001) and the ideal value. 8. difference between ideal slope of the transfer functi on and measured slope computed from code 0x000 and 0xfff when buffer is off, and from code giving 0.2 v and (v dda ? 0.2) v when buffer is on. 9. in buffered mode, the output can overshoot above the final value for low input code (starting from min value). table 65. dac characteristics (continued) symbol parameter conditions min typ max unit 5 / & / %xiihuhg1rqexiihuhg'$& '$&b287[ %xiihu  elw gljlwdowr dqdorj frqyhuwhu ai6
docid025844 rev 7 99/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.3.17 temperature sensor characteristics 6.3.18 comparators table 66. temperature sensor calibration values calibration value name description memory address ts_cal1 ts adc raw data acquired at temperature of 30 c, v dda = 3 v 0x1ff8 007a - 0x1ff8 007b ts_cal2 ts adc raw data acquired at temperature of 130 c, v dda = 3 v 0x1ff8 007e - 0x1ff8 007f table 67. temperature sensor characteristics symbol parameter min typ max unit t l (1) 1. guaranteed by characterization results. v sense linearity with temperature - 1 2c avg_slope (1) average slope 1.48 1.61 1.75 mv/c v 130 voltage at 130c 5c (2) 2. measured at v dd = 3 v 10 mv. v130 adc conversion result is stored in the ts_cal2 byte. 640 670 700 mv i dda (temp) (3) current consumption - 3.4 6 a t start (3) 3. guaranteed by design. startup time - - 10 s t s_temp (4)(3) 4. shortest sampling time can be determined in the application by multiple iterations. adc sampling time when reading the temperature 10 - - table 68. comparator 1 characteristics symbol parameter conditions min (1) typ max (1) unit v dda analog supply voltage - 1.65 3.6 v r 400k r 400k value - - 400 - k r 10k r 10k value - - 10 - v in comparator 1 input voltage range -0.6-v dda v t start comparator startup time - - 7 10 s td propagation delay (2) --310 voffset comparator offset - - 3 10 mv d voffset /dt comparator offset variation in worst voltage stress conditions v dda = 3.6 v, v in+ = 0 v, v in- = v refint , t a = 25 c 0 1.5 10 mv/1000 h i comp1 current consumption (3) - - 160 260 na 1. guaranteed by characterization. 2. the delay is characteri zed for 100 mv input step with 10 mv overdrive on the inverting input, the non-inverting input set to the reference. 3. comparator consumption only. inte rnal reference voltage not included.
electrical characteristics stm32l053x6 stm32l053x8 100/132 docid025844 rev 7 table 69. comparator 2 characteristics symbol parameter conditions min typ max (1) unit v dda analog supply voltage - 1.65 - 3.6 v v in comparator 2 input voltage range - 0 - v dda v t start comparator startup time fast mode - 15 20 s slow mode - 20 25 t d slow propagation delay (2) in slow mode 1.65 v v dda 2.7 v - 1.8 3.5 2.7 v v dda 3.6 v - 2.5 6 t d fast propagation delay (2) in fast mode 1.65 v v dda 2.7 v - 0.8 2 2.7 v v dda 3.6 v - 1.2 4 v offset comparator offset error - 4 20 mv dthreshold/ dt threshold voltage temperature coefficient v dda = 3.3v, t a = 0 to 50 c, v- = v refint , 3/4 v refint , 1/2 v refint , 1/4 v refint . -15 30 ppm /c i comp2 current consumption (3) fast mode - 3.5 5 a slow mode - 0.5 2 1. guaranteed by characterization results. 2. the delay is characterized for 100 mv input step with 10 mv ov erdrive on the inverting input, the non-inverting input set to the reference. 3. comparator consumption only. internal reference vo ltage (required for comparator operation) is not included.
docid025844 rev 7 101/132 stm32l053x6 stm32l053x8 electrical characteristics 112 6.3.19 timer characteristics tim timer characteristics the parameters given in the table 70 are guaranteed by design. refer to section 6.3.13: i/o port characteristics for details on the input/output alternate function characteristics (output compare, i nput capture, external clock, pwm output). 6.3.20 communications interfaces i 2 c interface characteristics the i 2 c interface meets the timings requirements of the i 2 c-bus specification and user manual rev. 03 for: ? standard-mode (sm) : with a bit rate up to 100 kbit/s ? fast-mode (fm) : with a bit rate up to 400 kbit/s ? fast-mode plus (fm+) : with a bit rate up to 1 mbit/s. the i 2 c timing requirements are guaranteed by design when the i 2 c peripheral is properly configured (refer to the reference manual for details). the sda and scl i/o requirements are met with the following restrictions: the sda and scl i/o pins are not "true" open-drain. when configured as open-drain, the pmos c onnected between the i/ o pin and vddiox is disabled, but is still present. only ftf i/o pins support fm+ low level output current maximum requirement (refer to section 6.3.13: i/o port characteristics for the i2c i/os characteristics). all i 2 c sda and scl i/os embed an analog filter (see table 71 for the analog filter characteristics). table 70. timx characteristics (1) symbol parameter conditions min max unit t res(tim) timer resolution time 1-t timxclk f timxclk = 32 mhz 31.25 - ns f ext timer external clock frequency on ch1 to ch4 0f timxclk /2 mhz f timxclk = 32 mhz 0 16 mhz res tim timer resolution - 16 bit t counter 16-bit counter clock period when internal clock is selected (timer?s prescaler disabled) - 1 65536 t timxclk f timxclk = 32 mhz 0.0312 2048 s t max_count maximum possible count - - 65536 65536 t timxclk f timxclk = 32 mhz - 134.2 s 1. timx is used as a general term to refer to the tim2, tim6, tim21, and tim22 timers.
electrical characteristics stm32l053x6 stm32l053x8 102/132 docid025844 rev 7 the analog spike filter is compliant with i 2 c timings requirements only for the following voltage ranges: ? fast mode plus: 2.7 v v dd 3.6 v and voltage scaling range 1 ? fast mode: ?2 v v dd 3.6 v and voltage scaling range 1 or range 2. ?v dd < 2 v, voltage scaling range 1 or range 2, c load < 200 pf. in other ranges, the analog filter should be di sabled. the digital filter can be used instead. note: in standard mode, no spike filter is required. usart/lpuart characteristics the parameters given in the following table are guaranteed by design. table 71. i2c analog filter characteristics (1) 1. guaranteed by characterization results. symbol parameter conditions min max unit t af maximum pulse width of spikes that are suppressed by the analog filter range 1 50 (2) 2. spikes with widths below t af(min) are filtered. 260 (3) 3. spikes with widths above t af(max) are not filtered ns range 2 - range 3 - table 72. usart/lpuart characteristics symbol parameter conditions typ max unit t wuusart wakeup time needed to calculate the maximum usart/lpuart baudrate allowing to wake up from stop mode when the usart/lpuart is clocked by hsi stop mode with main regulator in run mode, range 2 or 3 -8.7 s stop mode with main regulator in run mode, range 1 -8.1 stop mode with main regulator in low-power mode, range 2 or 3 -12 stop mode with main regulator in low-power mode, range 1 -11.4
docid025844 rev 7 103/132 stm32l053x6 stm32l053x8 electrical characteristics 112 spi characteristics unless otherwise specified, th e parameters given in the following tables are derived from tests performed under ambient temperature, f pclkx frequency and v dd supply voltage conditions su mmarized in table 24 . refer to section 6.3.12: i/o current injection char acteristics for more details on the input/output alternate function char acteristics (nss, sck, mosi, miso). table 73. spi characteristics in voltage range 1 (1) 1. guaranteed by characterization results. symbol parameter conditions min typ max unit f sck 1/t c(sck) spi clock frequency master mode -- 16 mhz slave mode receiver 16 slave mode transmitter 1.71 electrical characteristics stm32l053x6 stm32l053x8 104/132 docid025844 rev 7 table 74. spi characteristics in voltage range 2 (1) symbol parameter cond itions min typ max unit f sck 1/t c(sck) spi clock frequency master mode -- 8 mhz slave mode transmitter 1.65 docid025844 rev 7 105/132 stm32l053x6 stm32l053x8 electrical characteristics 112 table 75. spi characteristics in voltage range 3 (1) symbol parameter cond itions min typ max unit f sck 1/t c(sck) spi clock frequency master mode -- 2 mhz slave mode 2 (2) duty (sck) duty cycle of spi clock frequency slave mode 30 50 70 % t su(nss) nss setup time slave mode, spi presc = 2 4*tpclk - - ns t h(nss) nss hold time slave mode, spi presc = 2 2*tpclk - - t w(sckh) t w(sckl) sck high and low time master mode tpclk-2 tpclk tpclk+2 t su(mi) data input setup time master mode 1.5 - - t su(si) slave mode 6 - - t h(mi) data input hold time master mode 13.5 - - t h(si) slave mode 16 - - t a(so data output access time slave mode 30 - 70 t dis(so) data output disable time slave mode 40 - 80 t v(so) data output valid time slave mode - 30 70 t v(mo) master mode - 7 9 t h(so) data output hold time slave mode 25 - - t h(mo) master mode 8 - - 1. guaranteed by characterization results. 2. the maximum spi clock frequency in slave tr ansmitter mode is determined by the sum of t v(so) and t su(mi) which has to fit into sck low or high phase preceding the sck sampling edge. this value can be achieved when the spi communicates with a master having t su(mi) = 0 while duty (sck) = 50%.
electrical characteristics stm32l053x6 stm32l053x8 106/132 docid025844 rev 7 figure 31. spi timing diagram - slave mode and cpha = 0 figure 32. spi timing diagram - slave mode and cpha = 1 (1) 1. measurement points are done at cmos levels: 0.3v dd and 0.7v dd. 06y9 166lqsxw &3+$  &32/  6&.lqsxw &3+$  &32/  0,62rxwsxw 026,lqsxw w vx 6, w k 6, w z 6&./ w z 6&.+ w f 6&. w u 6&. w k 166 w glv 62 w vx 166 w d 62 w y 62 1h[welwv,1 /dvwelw287 )luvwelw,1 )luvwelw287 1h[welwv287 w k 62 w i 6&. /dvwelw,1 06y9 166lqsxw &3+$  &32/  6&.lqsxw &3+$  &32/  0,62rxwsxw 026,lqsxw w vx 6, w k 6, w z 6&./ w z 6&.+ w vx 166 w f 6&. w d 62 w y 62 )luvwelw287 1h[welwv287 1h[welwv,1 /dvwelw287 w k 62 w u 6&. w i 6&. w k 166 w glv 62 )luvwelw,1 /dvwelw,1
docid025844 rev 7 107/132 stm32l053x6 stm32l053x8 electrical characteristics 112 figure 33. spi timing diagram - master mode (1) 1. measurement points are done at cmos levels: 0.3v dd and 0.7v dd. dlf 6&.2xwsxw &3+$  026, 287387 0,62 ,13 87 &3+$  /6%287 /6%,1 &32/  &32/  % , 7287 166lqsxw w f 6&. w z 6&.+ w z 6&./ w u 6&. w i 6&. w k 0, +ljk 6&.2xwsxw &3+$  &3+$  &32/  &32/  w vx 0, w y 02 w k 02 06%,1 %,7,1 06%287
electrical characteristics stm32l053x6 stm32l053x8 108/132 docid025844 rev 7 i2s characteristics note: refer to the i2s section of the product refe rence manual for more details about the sampling frequency (fs), f mck , f ck and d ck values. these values reflect only the digital peripheral behavior, source clock precision might slig htly change them. dck depends mainly on the odd bit value, digital contribution leads to a min of (i2sdiv/(2*i2sdiv+odd) and a max of (i2sdiv+odd)/(2*i2sdiv+odd). fs max is supported for each mode/condition. table 76. i2s characteristics (1) symbol parameter conditions min max unit f mck i2s main clock output - 256 x 8k 256xfs (2) mhz f ck i2s clock frequency master data: 32 bits - 64xfs mhz slave data: 32 bits - 64xfs d ck i2s clock frequency duty cycle slave receiver 30 70 % t v(ws) ws valid time master mode - 15 ns t h(ws) ws hold time master mode 11 - t su(ws) ws setup time slave mode 6 - t h(ws) ws hold time slave mode 2 - t su(sd_mr) data input setup time master receiver 0 - t su(sd_sr) slave receiver 6.5 - t h(sd_mr) data input hold time master receiver 18 - t h(sd_sr) slave receiver 15.5 - t v(sd_st) data output valid time slave transmitter (after enable edge) - 77 t v(sd_mt) master transmitter (after enable edge) - 8 t h(sd_st) data output hold time slave transmitter (after enable edge) 18 - t h(sd_mt) master transmitter (after enable edge) 1.5 - 1. guaranteed by characterization results. 2. 256xfs maximum value is equal to the maximum clock frequency.
docid025844 rev 7 109/132 stm32l053x6 stm32l053x8 electrical characteristics 112 figure 34. i 2 s slave timing diagram (philips protocol) (1) 1. measurement points are done at cmos levels: 0.3 v dd and 0.7 v dd . 2. lsb transmit/receive of the previ ously transmitted byte. no lsb transmi t/receive is sent before the first byte. figure 35. i 2 s master timing diagram (philips protocol) (1) 1. guaranteed by characterization results. 2. lsb transmit/receive of the previ ously transmitted byte. no lsb transmi t/receive is sent before the first byte. &.,qsxw &32/  &32/  w f &. :6lqsxw 6' wudqvplw 6' uhfhlyh w z &.+ w z &./ w vx :6 w y 6'b67 w k 6'b67 w k :6 w vx 6'b65 w k 6'b65 06%uhfhlyh %lwquhfhlyh /6%uhfhlyh 06%wudqvplw %lwqwudqvplw /6%wudqvplw dle /6%uhfhlyh  /6%wudqvplw  #+output #0/, #0/, t c#+ 73output 3$ receive 3$ transmit t w#+( t w#+, t su3$?-2 t v3$?-4 t h3$?-4 t h73 t h3$?-2 -3"receive "itnreceive ,3"receive -3"transmit "itntransmit ,3"transmit aib t f#+ t r#+ t v73 ,3"receive  ,3"transmit 
electrical characteristics stm32l053x6 stm32l053x8 110/132 docid025844 rev 7 usb characteristics the usb interface is usb-if certified (full speed). table 77. usb startup time symbol parameter max unit t startup (1) 1. guaranteed by design. usb transceiver startup time 1 s table 78. usb dc electrical characteristics symbol parameter c onditions min. (1) 1. all the voltages are measured from the local ground potential. max. (1) unit input levels v dd usb operating voltage - 3.0 3.6 v v di (2) 2. guaranteed by characterization results. differential input sensitivity i(usb_dp, usb_dm) 0.2 - v v cm (2) differential common mode range includes v di range 0.8 2.5 v se (2) single ended receiver threshold - 1.3 2.0 output levels v ol (3) 3. guaranteed by test in production. static output level low r l of 1.5 k to 3.6 v (4) 4. r l is the load connected on the usb drivers. -0.3 v v oh (3) static output level high r l of 15 k to v ss (4) 2.8 3.6
docid025844 rev 7 111/132 stm32l053x6 stm32l053x8 electrical characteristics 112 figure 36. usb timings: definition of data signal rise and fall time 6.3.21 lcd controller the devices embed a built-in step-up converter to provide a constant lcd reference voltage independently from the v dd voltage. an external capacitor c ext must be connected to the v lcd pin to decouple this converter. table 79. usb: full speed electrical characteristics driver characteristics (1) 1. guaranteed by design. symbol parameter conditions min max unit t r rise time (2) 2. measured from 10% to 90% of the data signal. for more detailed informations, please refer to usb specification - chapter 7 (version 2.0). c l = 50 pf 420ns t f fall time (2) c l = 50 pf 4 20 ns t rfm rise/ fall time matching t r /t f 90 110 % v crs output signal crossover voltage 1.3 2.0 v dl w i 66 w u 9 &56 9 'liihuhqwldo gdwdolqhv &urvvryhu srlqwv table 80. lcd controller characteristics symbol parameter min typ max unit v lcd lcd external voltage - - 3.6 v v lcd0 lcd internal reference voltage 0 - 2.6 - v lcd1 lcd internal reference voltage 1 - 2.73 - v lcd2 lcd internal reference voltage 2 - 2.86 - v lcd3 lcd internal reference voltage 3 - 2.98 - v lcd4 lcd internal reference voltage 4 - 3.12 - v lcd5 lcd internal reference voltage 5 - 3.26 - v lcd6 lcd internal reference voltage 6 - 3.4 - v lcd7 lcd internal reference voltage 7 - 3.55 - c ext v lcd external capacitance 0.1 - 2 f
electrical characteristics stm32l053x6 stm32l053x8 112/132 docid025844 rev 7 i lcd (1) supply current at v dd = 2.2 v - 3.3 - a supply current at v dd = 3.0 v - 3.1 - r htot (2) low drive resistive network overall value 5.28 6.6 7.92 m r l (2) high drive resistive network total value 192 240 288 k v 44 segment/common highest level voltage - - v lcd v v 34 segment/common 3/4 level voltage - 3/4 v lcd - v v 23 segment/common 2/3 level voltage - 2/3 v lcd - v 12 segment/common 1/2 level voltage - 1/2 v lcd - v 13 segment/common 1/3 level voltage - 1/3 v lcd - v 14 segment/common 1/4 level voltage - 1/4 v lcd - v 0 segment/common lowest level voltage 0 - - vxx (3) segment/common level voltage error t a = -40 to 85 c -- 50 mv 1. lcd enabled with 3 v internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no lcd connected. 2. guaranteed by design. 3. guaranteed by characterization results. table 80. lcd controller characteristics (continued) symbol parameter min typ max unit
docid025844 rev 7 113/132 stm32l053x6 stm32l053x8 package information 125 7 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions and product status are available at www.st.com . ecopack ? is an st trademark. 7.1 lqfp64 package information figure 37. lqfp64 - 64-pin, 10 x 10 mm low-profile quad flat package outline 1. drawing is not to scale. :b0(b9 $ $ $ 6($7,1*3/$1( fff & e & f $ / / . ,'(17,),&$7,21 3,1 ' ' ' h         ( ( ( *$8*(3/$1( pp
package information stm32l053x6 stm32l053x8 114/132 docid025844 rev 7 table 81. lqfp64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d - 12.000 - - 0.4724 - d1 - 10.000 - - 0.3937 - d3 - 7.500 - - 0.2953 - e - 12.000 - - 0.4724 - e1 - 10.000 - - 0.3937 - e3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - k 03.57 03.57 l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031
docid025844 rev 7 115/132 stm32l053x6 stm32l053x8 package information 125 figure 38. lqfp64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint 1. dimensions are expr essed in millimeters.                 aic
package information stm32l053x6 stm32l053x8 116/132 docid025844 rev 7 device marking for lqfp64 the following figure gives an example of topsid e marking versus pin 1 position identifier location. other optional marking or inse t/upset marks, which depend on supply chain operations, are not indicated below. figure 39. lqfp64 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity. 06y9 5hylvlrqfrgh 670/ 3urgxfwlghqwlilfdwlrq  'dwhfrgh <:: 3lq lqghqwlilhu 57 5
docid025844 rev 7 117/132 stm32l053x6 stm32l053x8 package information 125 7.2 tfbga64 package information figure 40. tfbga64 ? 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid array package outline 1. drawing is not to scale. table 82. tfbga64 ? 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.200 - - 0.0472 a1 0.150 - - 0.0059 - - a2 - 0.200 - - 0.0079 - a4 - - 0.600 - - 0.0236 b 0.250 0.300 0.350 0.0098 0.0118 0.0138 d 4.850 5.000 5.150 0.1909 0.1969 0.2028 d1 - 3.500 - - 0.1378 - e 4.850 5.000 5.150 0.1909 0.1969 0.2028 e1 - 3.500 - - 0.1378 - 5b0(b9 6hdwlqjsodqh $ h ) ) ' + ?e edoov $ ( 7239,(: %277209,(:  h $ % $ & ggg & ' ( hhh & % $ iii ? ? 0 0 & $ $ $edoo lghqwlilhu $edoo lqgh[duhd 6,'(9,(:
package information stm32l053x6 stm32l053x8 118/132 docid025844 rev 7 figure 41. tfbga64 ? 64-ball, 5 x 5 mm, 0. 5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint note: non solder mask defined (nsmd) pads are recommended. 4 to 6 mils solder paste screen printing process. e - 0.500 - - 0.0197 - f - 0.750 - - 0.0295 - ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. values in inches are converted from mm and rounded to 4 decimal digits. table 83. tfbga64 recommended pcb design rules (0.5 mm pitch bga) dimension recommended values pitch 0.5 dpad 0.27 mm dsm 0.35 mm typ. (depends on the soldermask registration tolerance) solder paste 0.27 mm aperture diameter. table 82. tfbga64 ? 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max 069 'vp 'sdg
docid025844 rev 7 119/132 stm32l053x6 stm32l053x8 package information 125 device marking for tfbga64 the following figure gives an example of topside marking versus ball a 1 position identifier location. other optional marking or inse t/upset marks, which depend on supply chain operations, are not indicated below. figure 42. tfbga64 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity. /5+ 5 < :: 06y9 3urgxfwlghqwlilfdwlrq  'dwhfrgh <hduzhhn %doo$ 5hylvlrq frgh
package information stm32l053x6 stm32l053x8 120/132 docid025844 rev 7 7.3 lqfp48 package information figure 43. lqfp48 - 48-pin, 7 x 7 mm low-profile quad flat package outline 1. drawing is not to scale. "?-%?6 0). )$%.4)&)#!4)/. ccc # # $ mm '!5'%0,!.% b ! ! ! c ! , , $ $ % % % e         3%!4).' 0,!.% +
docid025844 rev 7 121/132 stm32l053x6 stm32l053x8 package information 125 figure 44. lqfp48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint 1. dimensions are expr essed in millimeters. table 84. lqfp48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d 8.800 9.000 9.200 0.3465 0.3543 0.3622 d1 6.800 7.000 7.200 0.2677 0.2756 0.2835 d3 - 5.500 - - 0.2165 - e 8.800 9.000 9.200 0.3465 0.3543 0.3622 e1 6.800 7.000 7.200 0.2677 0.2756 0.2835 e3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - k 03.57 03.57 ccc - - 0.080 - - 0.0031                  aid  
package information stm32l053x6 stm32l053x8 122/132 docid025844 rev 7 device marking for lqfp48 the following figure gives an example of topsid e marking versus pin 1 position identifier location. other optional marking or inse t/upset marks, which depend on supply chain operations, are not indicated below. figure 45. lqfp48 marking example (package top view) 1. parts marked as ?es?, ?e? or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity. 670/ &7 06y9 3lq lqghqwlilhu 3urgxfwlghqwlilfdwlrq  'dwhfrgh <:: 5hylvlrqfrgh 5
docid025844 rev 7 123/132 stm32l053x6 stm32l053x8 package information 125 7.4 thermal characteristics the maximum chip-junction temperature, t j max, in degrees celsius, may be calculated using the following equation: t j max = t a max + (p d max ja ) where: ? t a max is the maximum ambient temperature in c, ? ja is the package junction-to-ambient thermal resistance, in c/w, ? p d max is the sum of p int max and p i/o max (p d max = p int max + p i/o max), ? p int max is the product of i dd and v dd , expressed in watts. th is is the maximum chip internal power. p i/o max represents the maximum power dissipation on output pins where: p i/o max = (v ol i ol ) + ((v dd ? v oh ) i oh ), taking into account the actual v ol / i ol and v oh / i oh of the i/os at low and high level in the application. figure 46. thermal resistance table 85. thermal characteristics symbol parameter value unit ja thermal resistance junction-ambient tfbga64 - 5 x 5 mm / 0.5 mm pitch 61 c/w thermal resistance junction-ambient lqfp64 - 10 x 10 mm / 0.5 mm pitch 45 thermal resistance junction-ambient lqfp48 - 7 x 7 mm / 0.5 mm pitch 55 06y9  ?  ? ? ?? ? ?? e ??  ? ? ??  >y&we >y&we? d&'e 7hpshudwxuh ?& 3' p:
package information stm32l053x6 stm32l053x8 124/132 docid025844 rev 7 7.4.1 reference document jesd51-2 integrated circuits thermal test method environment conditions - natural convection (still air). available from www.jedec.org.
docid025844 rev 7 125/132 stm32l053x6 stm32l053x8 part numbering 125 8 part numbering for a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest st sales office. table 86. stm32l053x6/8 ordering information scheme example: stm32 l 053 r 8 t 6 d tr device family stm32 = arm-based 32-bit microcontroller product type l = low power device subfamily 053 = usb + lcd pin count c = 48/49 pins r = 64 pins flash memory size 6 = 32 kbytes 8 = 64 kbytes package t = lqfp h = tfbga temperature range 6 = industrial temperature range, ?40 to 85 c 7 = industrial temperature range, ?40 to 105 c 3 = industrial temperature range, ?40 to 125 c options no character = v dd range: 1.8 to 3.6 v and bor enabled d = v dd range: 1.65 to 3.6 v and bor disabled packing tr = tape and reel no character = tray or tube
revision history stm32l053x6 stm32l053x8 126/132 docid025844 rev 7 9 revision history table 87. document revision history date revision changes 07-feb-2014 1 initial release. 29-apr-2014 2 updated table 4: functionalities depending on the working mode (from run/active down to standby) . added section 3.2: interconnect matrix . updated figure 4: stm32l053x6/8 tfbga64 ballout - 5x 5 mm . added vref_out additional function to pb0 and pb1, replaced tta i/o structure by tc, and updated pa 0/4/5 and pc5/14 i/o structure, and added note 2 in table 15: stm32l053x6/8 pin definitions . updated table 24: general operating conditions , table 21: voltage characteristics and table 22: current characteristics . modified conditions in table 27: embedded internal reference voltage . updated table 28: current consumption in run mode, code with data processing running from flash , table 30: current consumption in run mode, code with data processing running from ram , table 32: current consumption in sleep mode , table 33: current consumption in low- power run mode , table 34: current consumption in low-power sleep mode , table 35: typical and maximum current consumptions in stop mode and table 36: typical and maximum current consumptions in standby mode . added figure 12: idd vs vdd, at ta= 25/55/85/105 c, run mode, code running from flash memory, range 2, hse, 1ws , figure 13: idd vs vdd, at ta= 25/55/85/105 c, run mode, code running from flash memory, range 2, hsi16, 1ws , figure 14: idd vs vdd, at ta= 25/55/ 85/105/125 c , low-power run mode, code running from ram, range 3, msi (range 0) at 64 khz, 0 ws , figure 15: idd vs vdd, at ta= 25/55 / 85/105/125 c, stop mode with rtc enabled and running on lse low drive and figure 16: idd vs vdd, at ta= 25/55/85/105/125 c, stop mode with rtc disabled, all clocks off . updated table 43: hse oscillator characteristics and table 44: lse oscillator characteristics . added figure 21: hsi16 minimum and maximum value versus temperature . updated table 55: esd absolute maximum ratings , table 57: i/o current injection susceptibility , table 58: i/o static characteristics . added figure 22: vih/vil versus vdd (cmos i/os) and figure 23: vih/vil versus vdd (ttl i/os) . updated table 59: output voltage characteristics , table 60: i/o ac characteristics and figure 24: i/o ac char acteristics definition . updated table 62: adc characteristics , table 64: adc accuracy , and figure 27: typical connection diagram using the adc . updated table 66: temperature sensor calibration values . updated table 73: spi characteristics in voltage range 1 and table 76: i2s characteristics . added figure 46: thermal resistance .
docid025844 rev 7 127/132 stm32l053x6 stm32l053x8 revision history 131 25-jun-2014 3 adc now guaranteed down to 1.65 v. cover page: updated core speed, added minimum supply voltage for adc, dac and comparators. updated list of applications in section 1: introduction . changed number of i2s interfaces to one in section 2: description . updated rtc/tim21 in table 5: stm32l0xx peripherals interconnect matrix . updated table 4: functionalities depending on the working mode (from run/active down to standby) . updated section 3.4.1: power supply schemes . updated figure 4: stm32l053x6/8 tfbga64 ballout - 5x 5 mm . updated v dda in table 24: general operating conditions . splitted table current consumption in r un mode, code with data processing running from flash into table 28 and table 29 and content updated. splitted table current consumption in run mode, code with data processing running from ram into table 30 and table 31 and content updated. updated table 32: current consumption in sleep mode , table 33: current consumption in low-power run mode , table 34: current consumption in low-power sleep mode , table 35: typical and maximum current consumptions in stop mode , table 36: typical and maximum current consumptions in standby mode , and added table 37: average current consumption during wakeup . updated table 38: peripheral current consumption in run or sleep mode and added table 39: peripheral current consumption in stop and standby mode . updated table 46: hsi48 oscillator characteristics . removed note 1 below figure 19: hse oscillator circuit diagram . updated t lock in table 49: pll characteristics . updated table 51: flash memory and data eeprom characteristics and table 52: flash memory and data eeprom endurance and retention . updated table 60: i/o ac characteristics . updated table 62: adc characteristics . updated figure 46: thermal resistance and added note 1. table 87. document revision history (continued) date revision changes
revision history stm32l053x6 stm32l053x8 128/132 docid025844 rev 7 05-sep-2014 4 extended operating temperature range to 125 c. updated minimum adc operating voltage to 1.65 v. replaced usart3 by lpuart1 in table 15: stm32l053x6/8 pin definitions and lpuart by lpuart1 in table 16: alternate function port a , table 17: alternate function port b , table 18: alternate function port c , table 19: alternate function port d and table 20: alternate function port h . updated pa6 in table 16: alternate function port a . updated temperature range in section 2: description , table 1: ultra- low-power stm32l053x6/x8 device features and peripheral counts . updated p d , t a and t j to add range 3 in table 24: general operating conditions . added range 3 in table 51: flash memory and data eeprom characteristics , table 52: flash memory and data eeprom endurance and retention . update note 1 in table 28: current consumption in run mode, code with data processing running from flash , table 30: current consumption in run mode, code with data processing running from ram , table 32: current consumption in sleep mode , table 33: current consumption in low-power run mode , table 34: current consumption in low-power sleep mode , table 35: typical and maximum current consumptions in stop mode , table 36: typical and maximum current consumptions in standby mode and table 40: low-power mode wakeup timings . updated figure 46: thermal resistance and removed note 1. updated figure 14: idd vs vdd, at ta= 25/55/ 85/105/125 c , low-power run mode, code running from ram, range 3, msi (range 0) at 64 khz, 0 ws , figure 15: idd vs vdd, at ta= 25/55 / 85/105/125 c, stop mode with rtc enabled and running on lse low drive , figure 16: idd vs vdd, at ta= 25/55/85/105/125 c, stop mode with rtc disabled, all clocks off . updated table 36: typical and maximum current consumptions in standby mode . updated syscfg in table 38: peripheral current consumption in run or sleep mode . updated table 39: peripheral current consumption in stop and standby mode and table 40: low-power mode wakeup timings . updated acc hsi16 temperature conditions in table 45: 16 mhz hsi16 oscillator characteristics . changed ambient temperature range in note 1 below table 46: hsi48 oscillator characteristics . updated v f(nrst) and v nf(nrst) in table 61: nrst pin characteristics . updated table 62: adc characteristics and table 64: adc accuracy . added range 3 in table 86: stm32l053x6/8 ordering information scheme . table 87. document revision history (continued) date revision changes
docid025844 rev 7 129/132 stm32l053x6 stm32l053x8 revision history 131 08-sep-2015 5 updated all pinout/ballout schemati cs to highlight pin/ball supplied through vdd_usb. updated current consumption in run mode in section : features . renamed boot1 into nboot1. changed usartx_rts into usartx_rts_de and lpuartx_rts into lpuartx_rts_de. updated vlcd in section 3.12: analog-to-digital converter (adc) adc no more available in low-power run and low-power sleep modes in table 4: functionalities depending on the working mode (from run/active down to standby) . updated figure 3: stm32l053x6/8 lqfp64 pinout - 10 x 10 mm , figure 4: stm32l053x6/8 tfbga64 ballout - 5x 5 mm and figure 5: stm32l053x6/8 lqfp48 pinout - 7 x 7 mm . changed i/o structure for pc5 and modified e5 and e6 signals for tfbga64 in table 15: stm32l053x6/8 pin definitions . added i vdd_usb and updated i io(pin) in table 22: current characteristics updated v dd_usb in table 22: current characteristics . changed temperature condition in table 7: internal voltage reference measured values and table 26: embedded internal reference voltage calibration values . updated t coeff in table 27: embedded internal reference voltage . added note related to standby mode in table 39: peripheral current consumption in stop and standby mode . updated figure 14: idd vs vdd, at ta = 25/55/ 85/105/125 c, low- power run mode, code running from ram, range 3, msi (range 0) at 64 khz, 0 ws , figure 15: idd vs vdd, at ta= 25/55/ 85/105/125 c, stop mode with rtc enabled and running on lse low drive and figure 16: idd vs vdd, at ta= 25 /55/85/105/125 c, stop mode with rtc disabled, all clocks off . updated table 40: low-power mode wakeup timings . updated msi oscillator temperature frequency drift in table 48: msi oscillator characteristics . updated table 62: adc characteristics , table 54: emi characteristics and table 55: esd absolute maximum ratings . added t up_ldo in table 62: adc characteristics . updated table 57: i/o current in jection susceptibility , table 58: i/o static characteristics (i lkg ) and table 60: i/o ac characteristics . section : i2c interface characteristics : updated introduction and table 71: i2c analog filter characteristics . updated figure 31: spi timing diagram - slave mode and cpha = 0 . added section : device marking for lqfp64 , updated figure 42: tfbga64 marking example (package top view) and figure 45: lqfp48 marking example (package top view) as well as notes below schematics. table 87. document revision history (continued) date revision changes
revision history stm32l053x6 stm32l053x8 130/132 docid025844 rev 7 11-mar-2016 6 updated number of spis on cover page and in table 1: ultra-low-power stm32l053x6/x8 device features and peripheral counts . changed minimum comparator supply voltage to 1.65 v on cover page. added number of fast and standard channels in section 3.12: analog- to-digital converter (adc) . changed lcd_vlcd1 into lcd_vlcd2 in section 3.13.2: vlcd voltage monitoring . updated section 3.19.2: universal synchronous/asynchronous receiver transmitter (usart) and section 3.19.4: serial peripheral interface (spi)/inter-integrated sound (i2s) to mention the fact that usarts with synchronous mode feature can be us ed as spi master interfaces. added baudrate allowing to wake up the mcu from stop mode in section 3.19.2: universal sync hronous/asynchronous receiver transmitter (usart) and section 3.19.3: low-power universal asynchronous receiver transmitter (lpuart) . in section 6: electric al characteristics , updated notes related to values guaranteed by characterization. section 6.3.15: 12-bit adc characteristics : ? table 62: adc characteristics : distinction made between v dda for fast and standard channels; added note 1 added note 4 related to r adc . updated f trig . and v ain maximum value; added v ref+ . updated t s and t conv . ? updated equation 1 description. ? updated table 63: rain max for fadc = 16 mhz for f adc = 16 mhz and distinction made between fast and standard channels. updated r o and added note 2 in table 65: dac characteristics . added table 72: usart/lpuart characteristics . updated figure 45: lqfp48 marking example (package top view) . table 87. document revision history (continued) date revision changes
docid025844 rev 7 131/132 stm32l053x6 stm32l053x8 revision history 131 11-oct-2016 7 updated note related to pa4 in table 15: stm32l053x6/8 pin definitions ; added same note to pa4 in table 8: capacitive sensing gpios available on stm32l053x6/8 devices and table 16: alternate function port a . updated vdd_usb and vdd in table 15: stm32l053x6/8 pin definitions . renamed usb_oe into usb_noe. added mission profile complia nce with jedec jesd47 in section 6.2: absolute maximum ratings . added note 2 . related to the position of the 0.1 f capacitor below figure 25: recommended nrst pin protection . updated r l in table 62: adc characteristics . updated t af maximum value for range 1 in table 71: i2c analog filter characteristics . updated t wuusart description in table 72: usart/lpuart characteristics . updated figure 31: spi timing diagram - slave mode and cpha = 0 and figure 32: spi timing diagram - slave mode and cpha = 1(1) . added reference to optional marking or inset/upset marks in all package device marking sections. table 87. document revision history (continued) date revision changes
stm32l053x6 stm32l053x8 132/132 docid025844 rev 7 important notice ? please read carefully stmicroelectronics nv and its subsidiaries (?st?) reserve the right to make changes, corrections, enhancements, modifications, and improvements to st products and/or to this document at any time without notice. purchasers should obtain the latest relevant in formation on st products before placing orders. st products are sold pursuant to st?s terms and conditions of sale in place at the time of o rder acknowledgement. purchasers are solely responsible for the choice, selection, and use of st products and st assumes no liability for application assistance or the design of purchasers? products. no license, express or implied, to any intellectual property right is granted by st herein. resale of st products with provisions different from the information set forth herein shall void any warranty granted by st for such product. st and the st logo are trademarks of st. all other product or service names are the property of their respective owners. information in this document supersedes and replaces information previously supplied in any prior versions of this document. ? 2016 stmicroelectronics ? all rights reserved


▲Up To Search▲   

 
Price & Availability of STM32L053R6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X